AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Winey M
  • References

Author: Winey M


References 98 references


No citations for this author.

Download References (.nbib)

  • Blank HM, et al. (2024) Translational control of MPS1 links protein synthesis with the initiation of cell division and spindle pole body duplication in Saccharomyces cerevisiae. Genetics 227(3) PMID:38713088
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Fabritius A, et al. (2024) Spindle checkpoint activation by fungal orthologs of the S. cerevisiae Mps1 kinase. PLoS One 19(3):e0301084 PMID:38530809
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • King BR, et al. (2021) Microtubule-associated proteins and motors required for ectopic microtubule array formation in Saccharomyces cerevisiae. Genetics 218(2) PMID:33752231
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Alonso A, et al. (2020) Yeast pericentrin/Spc110 contains multiple domains required for tethering the γ-tubulin complex to the centrosome. Mol Biol Cell 31(14):1437-1452 PMID:32374651
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Jones MH, et al. (2018) Key phosphorylation events in Spc29 and Spc42 guide multiple steps of yeast centrosome duplication. Mol Biol Cell 29(19):2280-2291 PMID:30044722
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • O'Toole ET, et al. (2017) Building Cell Structures in Three Dimensions: Electron Tomography Methods for Budding Yeast. Cold Spring Harb Protoc 2017(3) PMID:28250232
    • SGD Paper
    • DOI full text
    • PubMed
  • O'Toole ET, et al. (2017) Cryopreparation and Electron Tomography of Yeast Cells. Cold Spring Harb Protoc 2017(3) PMID:28250212
    • SGD Paper
    • DOI full text
    • PubMed
  • Viswanath S, et al. (2017) The molecular architecture of the yeast spindle pole body core determined by Bayesian integrative modeling. Mol Biol Cell 28(23):3298-3314 PMID:28814505
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Burns S, et al. (2015) Structured illumination with particle averaging reveals novel roles for yeast centrosome components during duplication. Elife 4 PMID:26371506
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Morphew MK, et al. (2015) Metallothionein as a clonable tag for protein localization by electron microscopy of cells. J Microsc 260(1):20-9 PMID:25974385
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Peng Y, et al. (2015) Interaction of CK1δ with γTuSC ensures proper microtubule assembly and spindle positioning. Mol Biol Cell 26(13):2505-18 PMID:25971801
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Avena JS, et al. (2014) Licensing of yeast centrosome duplication requires phosphoregulation of sfi1. PLoS Genet 10(10):e1004666 PMID:25340401
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hepperla AJ, et al. (2014) Minus-end-directed Kinesin-14 motors align antiparallel microtubules to control metaphase spindle length. Dev Cell 31(1):61-72 PMID:25313961
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Nannas NJ, et al. (2014) Chromosomal attachments set length and microtubule number in the Saccharomyces cerevisiae mitotic spindle. Mol Biol Cell 25(25):4034-48 PMID:25318669
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Choy JS, et al. (2013) Genome-wide haploinsufficiency screen reveals a novel role for γ-TuSC in spindle organization and genome stability. Mol Biol Cell 24(17):2753-63 PMID:23825022
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Meyer RE, et al. (2013) Mps1 and Ipl1/Aurora B act sequentially to correctly orient chromosomes on the meiotic spindle of budding yeast. Science 339(6123):1071-4 PMID:23371552
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Nazarova E, et al. (2013) Distinct roles for antiparallel microtubule pairing and overlap during early spindle assembly. Mol Biol Cell 24(20):3238-50 PMID:23966467
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rock JM, et al. (2013) Activation of the yeast Hippo pathway by phosphorylation-dependent assembly of signaling complexes. Science 340(6134):871-5 PMID:23579499
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Stemm-Wolf AJ, et al. (2013) Sfr13, a member of a large family of asymmetrically localized Sfi1-repeat proteins, is important for basal body separation and stability in Tetrahymena thermophila. J Cell Sci 126(Pt 7):1659-71 PMID:23426847
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Winey M and Bloom K (2012) Mitotic spindle form and function. Genetics 190(4):1197-224 PMID:22491889
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Jones MH, et al. (2011) Cell cycle phosphorylation of mitotic exit network (MEN) proteins. Cell Cycle 10(20):3435-40 PMID:22031224
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Keck JM, et al. (2011) A cell cycle phosphoproteome of the yeast centrosome. Science 332(6037):1557-61 PMID:21700874
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Klenchin VA, et al. (2011) Structure-function analysis of the C-terminal domain of CNM67, a core component of the Saccharomyces cerevisiae spindle pole body. J Biol Chem 286(20):18240-50 PMID:21454609
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Liu C, et al. (2011) Ubiquitin ligase Ufd2 is required for efficient degradation of Mps1 kinase. J Biol Chem 286(51):43660-43667 PMID:22045814
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Shirk K, et al. (2011) The Aurora kinase Ipl1 is necessary for spindle pole body cohesion during budding yeast meiosis. J Cell Sci 124(Pt 17):2891-6 PMID:21878496
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Holinger EP, et al. (2009) Budding yeast centrosome duplication requires stabilization of Spc29 via Mps1-mediated phosphorylation. J Biol Chem 284(19):12949-55 PMID:19269975
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Crasta K, et al. (2008) Inactivation of Cdh1 by synergistic action of Cdk1 and polo kinase is necessary for proper assembly of the mitotic spindle. Nat Cell Biol 10(6):665-75 PMID:18500339
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gardner MK, et al. (2008) Chromosome congression by Kinesin-5 motor-mediated disassembly of longer kinetochore microtubules. Cell 135(5):894-906 PMID:19041752
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gardner MK, et al. (2008) The microtubule-based motor Kar3 and plus end-binding protein Bim1 provide structural support for the anaphase spindle. J Cell Biol 180(1):91-100 PMID:18180364
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mattison CP, et al. (2007) Mps1 activation loop autophosphorylation enhances kinase activity. J Biol Chem 282(42):30553-61 PMID:17728254
    • SGD Paper
    • DOI full text
    • PubMed
  • Araki Y, et al. (2006) The Saccharomyces cerevisiae spindle pole body (SPB) component Nbp1p is required for SPB membrane insertion and interacts with the integral membrane proteins Ndc1p and Mps2p. Mol Biol Cell 17(4):1959-70 PMID:16436507
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Beliakova-Bethell N, et al. (2006) Virus-like particles of the Ty3 retrotransposon assemble in association with P-body components. RNA 12(1):94-101 PMID:16373495
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Crasta K, et al. (2006) Cdk1 regulates centrosome separation by restraining proteolysis of microtubule-associated proteins. EMBO J 25(11):2551-63 PMID:16688214
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Jaspersen SL, et al. (2006) The Sad1-UNC-84 homology domain in Mps3 interacts with Mps2 to connect the spindle pole body with the nuclear envelope. J Cell Biol 174(5):665-75 PMID:16923827
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
    • Reference supplement
  • Jones MH and Winey M (2006) Centrosome duplication: is asymmetry the clue? Curr Biol 16(18):R808-10 PMID:16979551
    • SGD Paper
    • DOI full text
    • PubMed
  • Palframan WJ, et al. (2006) Anaphase inactivation of the spindle checkpoint. Science 313(5787):680-4 PMID:16825537
    • SGD Paper
    • DOI full text
    • PubMed
  • Jones MH, et al. (2005) Chemical genetics reveals a role for Mps1 kinase in kinetochore attachment during mitosis. Curr Biol 15(2):160-5 PMID:15668173
    • SGD Paper
    • DOI full text
    • PubMed
  • Winey M, et al. (2005) Three-dimensional ultrastructure of Saccharomyces cerevisiae meiotic spindles. Mol Biol Cell 16(3):1178-88 PMID:15635095
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
    • Reference supplement
    • Reference supplement
  • Yoder TJ, et al. (2005) Analysis of a spindle pole body mutant reveals a defect in biorientation and illuminates spindle forces. Mol Biol Cell 16(1):141-52 PMID:15525672
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Fisk HA, et al. (2004) A field guide to the Mps1 family of protein kinases. Cell Cycle 3(4):439-42 PMID:14963409
    • SGD Paper
    • DOI full text
    • PubMed
  • Jaspersen SL and Winey M (2004) The budding yeast spindle pole body: structure, duplication, and function. Annu Rev Cell Dev Biol 20:1-28 PMID:15473833
    • SGD Paper
    • DOI full text
    • PubMed
  • Jaspersen SL, et al. (2004) Cdc28/Cdk1 regulates spindle pole body duplication through phosphorylation of Spc42 and Mps1. Dev Cell 7(2):263-74 PMID:15296722
    • SGD Paper
    • DOI full text
    • PubMed
    • Reference supplement
  • Lau CK, et al. (2004) A novel allele of Saccharomyces cerevisiae NDC1 reveals a potential role for the spindle pole body component Ndc1p in nuclear pore assembly. Eukaryot Cell 3(2):447-58 PMID:15075274
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Park CJ, et al. (2004) Requirement for Bbp1p in the proper mitotic functions of Cdc5p in Saccharomyces cerevisiae. Mol Biol Cell 15(4):1711-23 PMID:14767068
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Fisk HA, et al. (2003) Human Mps1 protein kinase is required for centrosome duplication and normal mitotic progression. Proc Natl Acad Sci U S A 100(25):14875-80 PMID:14657364
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Roberts P, et al. (2003) Piecemeal microautophagy of nucleus in Saccharomyces cerevisiae. Mol Biol Cell 14(1):129-41 PMID:12529432
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Burns CG, et al. (2002) Removal of a single alpha-tubulin gene intron suppresses cell cycle arrest phenotypes of splicing factor mutations in Saccharomyces cerevisiae. Mol Cell Biol 22(3):801-15 PMID:11784857
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Castillo AR, et al. (2002) The yeast protein kinase Mps1p is required for assembly of the integral spindle pole body component Spc42p. J Cell Biol 156(3):453-65 PMID:11827982
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Jaspersen SL, et al. (2002) Mps3p is a novel component of the yeast spindle pole body that interacts with the yeast centrin homologue Cdc31p. J Cell Biol 159(6):945-56 PMID:12486115
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • McBratney S and Winey M (2002) Mutant membrane protein of the budding yeast spindle pole body is targeted to the endoplasmic reticulum degradation pathway. Genetics 162(2):567-78 PMID:12399372
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Winey M and Huneycutt BJ (2002) Centrosomes and checkpoints: the MPS1 family of kinases. Oncogene 21(40):6161-9 PMID:12214245
    • SGD Paper
    • DOI full text
    • PubMed
  • Fisk HA and Winey M (2001) The mouse Mps1p-like kinase regulates centrosome duplication. Cell 106(1):95-104 PMID:11461705
    • SGD Paper
    • DOI full text
    • PubMed
  • Friedman DB, et al. (2001) Yeast Mps1p phosphorylates the spindle pole component Spc110p in the N-terminal domain. J Biol Chem 276(21):17958-67 PMID:11278681
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Giddings TH, et al. (2001) Using rapid freeze and freeze-substitution for the preparation of yeast cells for electron microscopy and three-dimensional analysis. Methods Cell Biol 67:27-42 PMID:11550475
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Haase SB, et al. (2001) Multi-step control of spindle pole body duplication by cyclin-dependent kinase. Nat Cell Biol 3(1):38-42 PMID:11146624
    • SGD Paper
    • DOI full text
    • PubMed
  • Jones MH, et al. (2001) Yeast Dam1p has a role at the kinetochore in assembly of the mitotic spindle. Proc Natl Acad Sci U S A 98(24):13675-80 PMID:11698664
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kerscher O, et al. (2001) Novel role for a Saccharomyces cerevisiae nucleoporin, Nup170p, in chromosome segregation. Genetics 157(4):1543-53 PMID:11290711
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Luca FC, et al. (2001) Saccharomyces cerevisiae Mob1p is required for cytokinesis and mitotic exit. Mol Cell Biol 21(20):6972-83 PMID:11564880
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Schaerer F, et al. (2001) Cnm67p is a spacer protein of the Saccharomyces cerevisiae spindle pole body outer plaque. Mol Biol Cell 12(8):2519-33 PMID:11514632
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Winey M and O'Toole ET (2001) The spindle cycle in budding yeast. Nat Cell Biol 3(1):E23-7 PMID:11146646
    • SGD Paper
    • DOI full text
    • PubMed
  • Chial HJ, et al. (2000) Yeast Eap1p, an eIF4E-associated protein, has a separate function involving genetic stability. Curr Biol 10(23):1519-22 PMID:11114520
    • SGD Paper
    • DOI full text
    • PubMed
  • Daum JR, et al. (2000) The spindle checkpoint of Saccharomyces cerevisiae responds to separable microtubule-dependent events. Curr Biol 10(21):1375-8 PMID:11084338
    • SGD Paper
    • DOI full text
    • PubMed
  • Gomez-Ospina N, et al. (2000) Yeast nuclear pore complex assembly defects determined by nuclear envelope reconstruction. J Struct Biol 132(1):1-5 PMID:11121302
    • SGD Paper
    • DOI full text
    • PubMed
  • Straight PD, et al. (2000) Mps1p regulates meiotic spindle pole body duplication in addition to having novel roles during sporulation. Mol Biol Cell 11(10):3525-37 PMID:11029053
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Chial HJ and Winey M (1999) Mechanisms of genetic instability revealed by analysis of yeast spindle pole body duplication. Biol Cell 91(6):439-50 PMID:10519004
    • SGD Paper
    • PubMed
  • Chial HJ, et al. (1999) Altered dosage of the Saccharomyces cerevisiae spindle pole body duplication gene, NDC1, leads to aneuploidy and polyploidy. Proc Natl Acad Sci U S A 96(18):10200-5 PMID:10468586
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Jones MH, et al. (1999) Yeast Dam1p is required to maintain spindle integrity during mitosis and interacts with the Mps1p kinase. Mol Biol Cell 10(7):2377-91 PMID:10397771
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Muñoz-Centeno MC, et al. (1999) Saccharomyces cerevisiae MPS2 encodes a membrane protein localized at the spindle pole body and the nuclear envelope. Mol Biol Cell 10(7):2393-406 PMID:10397772
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • O'Toole ET, et al. (1999) High-voltage electron tomography of spindle pole bodies and early mitotic spindles in the yeast Saccharomyces cerevisiae. Mol Biol Cell 10(6):2017-31 PMID:10359612
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Winey M (1999) Cell cycle: driving the centrosome cycle. Curr Biol 9(12):R449-52 PMID:10375518
    • SGD Paper
    • DOI full text
    • PubMed
  • Chial HJ, et al. (1998) Saccharomyces cerevisiae Ndc1p is a shared component of nuclear pore complexes and spindle pole bodies. J Cell Biol 143(7):1789-800 PMID:9864355
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • He X, et al. (1998) Mph1, a member of the Mps1-like family of dual specificity protein kinases, is required for the spindle checkpoint in S. pombe. J Cell Sci 111 ( Pt 12):1635-47 PMID:9601094
    • SGD Paper
    • DOI full text
    • PubMed
  • Komarnitsky SI, et al. (1998) DBF2 protein kinase binds to and acts through the cell cycle-regulated MOB1 protein. Mol Cell Biol 18(4):2100-7 PMID:9528782
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Luca FC and Winey M (1998) MOB1, an essential yeast gene required for completion of mitosis and maintenance of ploidy. Mol Biol Cell 9(1):29-46 PMID:9436989
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Schutz AR and Winey M (1998) New alleles of the yeast MPS1 gene reveal multiple requirements in spindle pole body duplication. Mol Biol Cell 9(4):759-74 PMID:9529376
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • O'Toole ET, et al. (1997) Three-dimensional analysis and ultrastructural design of mitotic spindles from the cdc20 mutant of Saccharomyces cerevisiae. Mol Biol Cell 8(1):1-11 PMID:9017591
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Schutz AR, et al. (1997) The yeast CDC37 gene interacts with MPS1 and is required for proper execution of spindle pole body duplication. J Cell Biol 136(5):969-82 PMID:9060463
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Winey M, et al. (1997) Nuclear pore complex number and distribution throughout the Saccharomyces cerevisiae cell cycle by three-dimensional reconstruction from electron micrographs of nuclear envelopes. Mol Biol Cell 8(11):2119-32 PMID:9362057
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hardwick KG, et al. (1996) Activation of the budding yeast spindle assembly checkpoint without mitotic spindle disruption. Science 273(5277):953-6 PMID:8688079
    • SGD Paper
    • DOI full text
    • PubMed
  • Mathias N, et al. (1996) Cdc53p acts in concert with Cdc4p and Cdc34p to control the G1-to-S-phase transition and identifies a conserved family of proteins. Mol Cell Biol 16(12):6634-43 PMID:8943317
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Weiss E and Winey M (1996) The Saccharomyces cerevisiae spindle pole body duplication gene MPS1 is part of a mitotic checkpoint. J Cell Biol 132(1-2):111-23 PMID:8567717
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Winey M (1996) Keeping the centrosome cycle on track. Genome stability. Curr Biol 6(8):962-4 PMID:8805324
    • SGD Paper
    • DOI full text
    • PubMed
  • Lauzé E, et al. (1995) Yeast spindle pole body duplication gene MPS1 encodes an essential dual specificity protein kinase. EMBO J 14(8):1655-63 PMID:7737118
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Winey M, et al. (1995) Three-dimensional ultrastructural analysis of the Saccharomyces cerevisiae mitotic spindle. J Cell Biol 129(6):1601-15 PMID:7790357
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Duden R, et al. (1994) Yeast beta- and beta'-coat proteins (COP). Two coatomer subunits essential for endoplasmic reticulum-to-Golgi protein traffic. J Biol Chem 269(39):24486-95 PMID:7929113
    • SGD Paper
    • PubMed
  • Vallen EA, et al. (1994) Genetic interactions between CDC31 and KAR1, two genes required for duplication of the microtubule organizing center in Saccharomyces cerevisiae. Genetics 137(2):407-22 PMID:8070654
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Winey M and Byers B (1993) Assembly and functions of the spindle pole body in budding yeast. Trends Genet 9(9):300-4 PMID:8236458
    • SGD Paper
    • DOI full text
    • PubMed
  • Winey M, et al. (1993) NDC1: a nuclear periphery component required for yeast spindle pole body duplication. J Cell Biol 122(4):743-51 PMID:8349727
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • DeMarini DJ, et al. (1992) SEN1, a positive effector of tRNA-splicing endonuclease in Saccharomyces cerevisiae. Mol Cell Biol 12(5):2154-64 PMID:1569945
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Goebl MG and Winey M (1991) The yeast cell cycle. Curr Opin Cell Biol 3(2):242-6 PMID:1831991
    • SGD Paper
    • DOI full text
    • PubMed
  • Winey M, et al. (1991) Genetic determinants of spindle pole body duplication in budding yeast. Cold Spring Harb Symp Quant Biol 56:705-8 PMID:1819518
    • SGD Paper
    • DOI full text
    • PubMed
  • Winey M, et al. (1991) MPS1 and MPS2: novel yeast genes defining distinct steps of spindle pole body duplication. J Cell Biol 114(4):745-54 PMID:1869587
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Culbertson MR and Winey M (1989) Split tRNA genes and their products: a paradigm for the study of cell function and evolution. Yeast 5(6):405-27 PMID:2694676
    • SGD Paper
    • DOI full text
    • PubMed
  • Mathison L, et al. (1989) Mutations in the anticodon stem affect removal of introns from pre-tRNA in Saccharomyces cerevisiae. Mol Cell Biol 9(10):4220-8 PMID:2685549
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Winey M, et al. (1989) A synthetic intron in a naturally intronless yeast pre-tRNA is spliced efficiently in vivo. Mol Cell Biol 9(1):329-31 PMID:2648132
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Winey M, et al. (1989) Distribution of introns in frameshift-suppressor proline-tRNA genes of Saccharomyces cerevisiae. Gene 76(1):89-97 PMID:2663651
    • SGD Paper
    • DOI full text
    • PubMed
  • Winey M and Culbertson MR (1988) Mutations affecting the tRNA-splicing endonuclease activity of Saccharomyces cerevisiae. Genetics 118(4):609-17 PMID:3284787
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Winey M, et al. (1986) Splicing of a yeast proline tRNA containing a novel suppressor mutation in the anticodon stem. J Mol Biol 192(1):49-63 PMID:3546704
    • SGD Paper
    • DOI full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top