AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Weisman LS
  • References

Author: Weisman LS


References 60 references


No citations for this author.

Download References (.nbib)

  • Hahn HJ, et al. (2025) Cargo adaptors use a handhold mechanism to engage with myosin V for organelle transport. J Cell Biol 224(7) PMID:40377475
    • SGD Paper
    • DOI full text
    • PubMed
  • Zhang L, et al. (2025) VAC14 oligomerization is essential for the function of the FAB1/PIKfyve-VAC14-FIG4 complex. Mol Biol Cell mbcE24110490 PMID:40305106
    • SGD Paper
    • DOI full text
    • PubMed
  • Jin Y, et al. (2022) Bur1 functions with TORC1 for vacuole-mediated cell cycle progression. EMBO Rep 23(4):e53477 PMID:35166010
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Steinfeld N, et al. (2021) Elevating PI3P drives select downstream membrane trafficking pathways. Mol Biol Cell 32(2):143-156 PMID:33237833
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Steinfeld N, et al. (2021) Simultaneous Detection of Phosphoinositide Lipids by Radioactive Metabolic Labeling. Methods Mol Biol 2251:1-17 PMID:33481228
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wong S and Weisman LS (2021) Let it go: mechanisms that detach myosin V from the yeast vacuole. Curr Genet 67(6):865-869 PMID:34110447
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Strunk BS, et al. (2020) Roles for a lipid phosphatase in the activation of its opposing lipid kinase. Mol Biol Cell 31(17):1835-1845 PMID:32583743
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wong S, et al. (2020) Cargo Release from Myosin V Requires the Convergence of Parallel Pathways that Phosphorylate and Ubiquitylate the Cargo Adaptor. Curr Biol 30(22):4399-4412.e7 PMID:32916113
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Takeda E, et al. (2018) Vacuole-mediated selective regulation of TORC1-Sch9 signaling following oxidative stress. Mol Biol Cell 29(4):510-522 PMID:29237820
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Jin N, et al. (2017) Early protection to stress mediated by CDK-dependent PI3,5P2 signaling from the vacuole/lysosome. J Cell Biol 216(7):2075-2090 PMID:28637746
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lang MJ, et al. (2017) An intramolecular interaction within the lipid kinase Fab1 regulates cellular phosphatidylinositol 3,5-bisphosphate lipid levels. Mol Biol Cell 28(7):858-864 PMID:28148651
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yau RG, et al. (2017) Spatial regulation of organelle release from myosin V transport by p21-activated kinases. J Cell Biol 216(6):1557-1566 PMID:28495836
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Jin Y and Weisman LS (2015) The vacuole/lysosome is required for cell-cycle progression. Elife 4 PMID:26322385
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Jin N, et al. (2014) Roles for PI(3,5)P2 in nutrient sensing through TORC1. Mol Biol Cell 25(7):1171-85 PMID:24478451
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Li SC, et al. (2014) The signaling lipid PI(3,5)P₂ stabilizes V₁-V(o) sector interactions and activates the V-ATPase. Mol Biol Cell 25(8):1251-62 PMID:24523285
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • McCartney AJ, et al. (2014) Activity-dependent PI(3,5)P2 synthesis controls AMPA receptor trafficking during synaptic depression. Proc Natl Acad Sci U S A 111(45):E4896-905 PMID:25355904
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • McCartney AJ, et al. (2014) Phosphatidylinositol 3,5-bisphosphate: low abundance, high significance. Bioessays 36(1):52-64 PMID:24323921
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yau RG, et al. (2014) Release from myosin V via regulated recruitment of an E3 ubiquitin ligase controls organelle localization. Dev Cell 28(5):520-33 PMID:24636257
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bridges D, et al. (2012) Rab5 proteins regulate activation and localization of target of rapamycin complex 1. J Biol Chem 287(25):20913-21 PMID:22547071
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Eves PT, et al. (2012) Overlap of cargo binding sites on myosin V coordinates the inheritance of diverse cargoes. J Cell Biol 198(1):69-85 PMID:22753895
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Jin Y, et al. (2011) Myosin V transports secretory vesicles via a Rab GTPase cascade and interaction with the exocyst complex. Dev Cell 21(6):1156-70 PMID:22172676
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sultana A, et al. (2011) The activation cycle of Rab GTPase Ypt32 reveals structural determinants of effector recruitment and GDI binding. FEBS Lett 585(22):3520-7 PMID:22024479
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Birkeland SR, et al. (2010) Discovery of mutations in Saccharomyces cerevisiae by pooled linkage analysis and whole-genome sequencing. Genetics 186(4):1127-37 PMID:20923977
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Dong XP, et al. (2010) PI(3,5)P(2) controls membrane trafficking by direct activation of mucolipin Ca(2+) release channels in the endolysosome. Nat Commun 1(4):38 PMID:20802798
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Fagarasanu A, et al. (2009) Myosin-driven peroxisome partitioning in S. cerevisiae. J Cell Biol 186(4):541-54 PMID:19687257
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Jin Y, et al. (2009) PTC1 is required for vacuole inheritance and promotes the association of the myosin-V vacuole-specific receptor complex. Mol Biol Cell 20(5):1312-23 PMID:19116310
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Jin N, et al. (2008) VAC14 nucleates a protein complex essential for the acute interconversion of PI3P and PI(3,5)P(2) in yeast and mouse. EMBO J 27(24):3221-34 PMID:19037259
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lipatova Z, et al. (2008) Direct interaction between a myosin V motor and the Rab GTPases Ypt31/32 is required for polarized secretion. Mol Biol Cell 19(10):4177-87 PMID:18653471
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Peng Y and Weisman LS (2008) The cyclin-dependent kinase Cdk1 directly regulates vacuole inheritance. Dev Cell 15(3):478-485 PMID:18804442
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Valiathan RR and Weisman LS (2008) Pushing for answers: is myosin V directly involved in moving mitochondria? J Cell Biol 181(1):15-8 PMID:18391069
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Chow CY, et al. (2007) Mutation of FIG4 causes neurodegeneration in the pale tremor mouse and patients with CMT4J. Nature 448(7149):68-72 PMID:17572665
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Duex JE, et al. (2006) The Vac14p-Fig4p complex acts independently of Vac7p and couples PI3,5P2 synthesis and turnover. J Cell Biol 172(5):693-704 PMID:16492811
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Duex JE, et al. (2006) Phosphoinositide 5-phosphatase Fig 4p is required for both acute rise and subsequent fall in stress-induced phosphatidylinositol 3,5-bisphosphate levels. Eukaryot Cell 5(4):723-31 PMID:16607019
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Pashkova N, et al. (2006) Structural basis for myosin V discrimination between distinct cargoes. EMBO J 25(4):693-700 PMID:16437158
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Peng Y, et al. (2006) Palmitoylation plays a role in targeting Vac8p to specific membrane subdomains. Traffic 7(10):1378-87 PMID:16978392
    • SGD Paper
    • DOI full text
    • PubMed
  • Tang F, et al. (2006) Vac8p, an armadillo repeat protein, coordinates vacuole inheritance with multiple vacuolar processes. Traffic 7(10):1368-77 PMID:16824055
    • SGD Paper
    • DOI full text
    • PubMed
  • Weisman LS (2006) Organelles on the move: insights from yeast vacuole inheritance. Nat Rev Mol Cell Biol 7(4):243-52 PMID:16607287
    • SGD Paper
    • DOI full text
    • PubMed
  • Pashkova N, et al. (2005) Myosin V attachment to cargo requires the tight association of two functional subdomains. J Cell Biol 168(3):359-64 PMID:15684027
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
    • Reference supplement
  • Pashkova N, et al. (2005) A point mutation in the cargo-binding domain of myosin V affects its interaction with multiple cargoes. Eukaryot Cell 4(4):787-98 PMID:15821138
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ishikawa K, et al. (2003) Identification of an organelle-specific myosin V receptor. J Cell Biol 160(6):887-97 PMID:12642614
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tang F, et al. (2003) Regulated degradation of a class V myosin receptor directs movement of the yeast vacuole. Nature 422(6927):87-92 PMID:12594460
    • SGD Paper
    • DOI full text
    • PubMed
  • Wang CW, et al. (2003) Yeast homotypic vacuole fusion requires the Ccz1-Mon1 complex during the tethering/docking stage. J Cell Biol 163(5):973-85 PMID:14662743
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Weisman LS (2003) Yeast vacuole inheritance and dynamics. Annu Rev Genet 37:435-60 PMID:14616069
    • SGD Paper
    • DOI full text
    • PubMed
  • Bonangelino CJ, et al. (2002) Osmotic stress-induced increase of phosphatidylinositol 3,5-bisphosphate requires Vac14p, an activator of the lipid kinase Fab1p. J Cell Biol 156(6):1015-28 PMID:11889142
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gary JD, et al. (2002) Regulation of Fab1 phosphatidylinositol 3-phosphate 5-kinase pathway by Vac7 protein and Fig4, a polyphosphoinositide phosphatase family member. Mol Biol Cell 13(4):1238-51 PMID:11950935
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wang YX, et al. (2001) Fusion of docked membranes requires the armadillo repeat protein Vac8p. J Biol Chem 276(37):35133-40 PMID:11441010
    • SGD Paper
    • DOI full text
    • PubMed
  • Catlett NL and Weisman LS (2000) Divide and multiply: organelle partitioning in yeast. Curr Opin Cell Biol 12(4):509-16 PMID:10873824
    • SGD Paper
    • DOI full text
    • PubMed
  • Catlett NL, et al. (2000) Two distinct regions in a yeast myosin-V tail domain are required for the movement of different cargoes. J Cell Biol 150(3):513-26 PMID:10931864
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Scott SV, et al. (2000) Apg13p and Vac8p are part of a complex of phosphoproteins that are required for cytoplasm to vacuole targeting. J Biol Chem 275(33):25840-9 PMID:10837477
    • SGD Paper
    • DOI full text
    • PubMed
  • Bryant NJ, et al. (1998) Retrograde traffic out of the yeast vacuole to the TGN occurs via the prevacuolar/endosomal compartment. J Cell Biol 142(3):651-63 PMID:9700156
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Catlett NL and Weisman LS (1998) The terminal tail region of a yeast myosin-V mediates its attachment to vacuole membranes and sites of polarized growth. Proc Natl Acad Sci U S A 95(25):14799-804 PMID:9843969
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gary JD, et al. (1998) Fab1p is essential for PtdIns(3)P 5-kinase activity and the maintenance of vacuolar size and membrane homeostasis. J Cell Biol 143(1):65-79 PMID:9763421
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wang YX, et al. (1998) Vac8p, a vacuolar protein with armadillo repeats, functions in both vacuole inheritance and protein targeting from the cytoplasm to vacuole. J Cell Biol 140(5):1063-74 PMID:9490720
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bonangelino CJ, et al. (1997) Vac7p, a novel vacuolar protein, is required for normal vacuole inheritance and morphology. Mol Cell Biol 17(12):6847-58 PMID:9372916
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hill KL, et al. (1996) Actin and myosin function in directed vacuole movement during cell division in Saccharomyces cerevisiae. J Cell Biol 135(6 Pt 1):1535-49 PMID:8978821
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wang YX, et al. (1996) Multiple classes of yeast mutants are defective in vacuole partitioning yet target vacuole proteins correctly. Mol Biol Cell 7(9):1375-89 PMID:8885233
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Nicolson TA, et al. (1995) A truncated form of the Pho80 cyclin redirects the Pho85 kinase to disrupt vacuole inheritance in S. cerevisiae. J Cell Biol 130(4):835-45 PMID:7642701
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Weisman LS and Wickner W (1992) Molecular characterization of VAC1, a gene required for vacuole inheritance and vacuole protein sorting. J Biol Chem 267(1):618-23 PMID:1730622
    • SGD Paper
    • PubMed
  • Weisman LS, et al. (1990) Mutants of Saccharomyces cerevisiae that block intervacuole vesicular traffic and vacuole division and segregation. Proc Natl Acad Sci U S A 87(3):1076-80 PMID:1689059
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Weisman LS, et al. (1987) Multiple methods of visualizing the yeast vacuole permit evaluation of its morphology and inheritance during the cell cycle. J Cell Biol 105(4):1539-47 PMID:2444598
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top