AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Walter P
  • References

Author: Walter P


References 108 references


No citations for this author.

Download References (.nbib)

  • Wang L, et al. (2022) Conserved structural elements specialize ATAD1 as a membrane protein extraction machine. Elife 11 PMID:35550246
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Li W, et al. (2021) Protomer alignment modulates specificity of RNA substrate recognition by Ire1. Elife 10 PMID:33904404
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tran NH, et al. (2021) The stress-sensing domain of activated IRE1α forms helical filaments in narrow ER membrane tubes. Science 374(6563):52-57 PMID:34591618
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Göke A, et al. (2020) Mrx6 regulates mitochondrial DNA copy number in Saccharomyces cerevisiae by engaging the evolutionarily conserved Lon protease Pim1. Mol Biol Cell 31(7):527-545 PMID:31532710
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wang L and Walter P (2020) Msp1/ATAD1 in Protein Quality Control and Regulation of Synaptic Activities. Annu Rev Cell Dev Biol 36:141-164 PMID:32886535
    • SGD Paper
    • DOI full text
    • PubMed
  • Peschek J and Walter P (2019) tRNA ligase structure reveals kinetic competition between non-conventional mRNA splicing and mRNA decay. Elife 8 PMID:31237564
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Li W, et al. (2018) Engineering ER-stress dependent non-conventional mRNA splicing. Elife 7 PMID:29985129
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cohen N, et al. (2017) Iron affects Ire1 clustering propensity and the amplitude of endoplasmic reticulum stress signaling. J Cell Sci 130(19):3222-3233 PMID:28794014
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rao M, et al. (2016) Multiple selection filters ensure accurate tail-anchored membrane protein targeting. Elife 5 PMID:27925580
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lang AB, et al. (2015) ER-mitochondrial junctions can be bypassed by dominant mutations in the endosomal protein Vps13. J Cell Biol 210(6):883-90 PMID:26370498
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Osman C, et al. (2015) Integrity of the yeast mitochondrial genome, but not its distribution and inheritance, relies on mitochondrial fission and fusion. Proc Natl Acad Sci U S A 112(9):E947-56 PMID:25730886
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Okreglak V and Walter P (2014) The conserved AAA-ATPase Msp1 confers organelle specificity to tail-anchored proteins. Proc Natl Acad Sci U S A 111(22):8019-24 PMID:24821790
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Pincus D, et al. (2014) Delayed Ras/PKA signaling augments the unfolded protein response. Proc Natl Acad Sci U S A 111(41):14800-5 PMID:25275008
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Schuck S, et al. (2014) ER-phagy mediates selective degradation of endoplasmic reticulum independently of the core autophagy machinery. J Cell Sci 127(Pt 18):4078-88 PMID:25052096
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Walter P (2014) Lasker Award winner Peter Walter. Nat Med 20(10):1112-4 PMID:25295946
    • SGD Paper
    • DOI full text
    • PubMed
  • van Anken E, et al. (2014) Specificity in endoplasmic reticulum-stress signaling in yeast entails a step-wise engagement of HAC1 mRNA to clusters of the stress sensor Ire1. Elife 3:e05031 PMID:25549299
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gardner BM, et al. (2013) Endoplasmic reticulum stress sensing in the unfolded protein response. Cold Spring Harb Perspect Biol 5(3):a013169 PMID:23388626
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Murley A, et al. (2013) ER-associated mitochondrial division links the distribution of mitochondria and mitochondrial DNA in yeast. Elife 2:e00422 PMID:23682313
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Moreira KE, et al. (2012) Seg1 controls eisosome assembly and shape. J Cell Biol 198(3):405-20 PMID:22869600
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gardner BM and Walter P (2011) Unfolded proteins are Ire1-activating ligands that directly induce the unfolded protein response. Science 333(6051):1891-4 PMID:21852455
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Korennykh AV, et al. (2011) Structural and functional basis for RNA cleavage by Ire1. BMC Biol 9:47 PMID:21729333
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kornmann B, et al. (2011) The conserved GTPase Gem1 regulates endoplasmic reticulum-mitochondria connections. Proc Natl Acad Sci U S A 108(34):14151-6 PMID:21825164
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rubio C, et al. (2011) Homeostatic adaptation to endoplasmic reticulum stress depends on Ire1 kinase activity. J Cell Biol 193(1):171-84 PMID:21444684
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Aguilar PS, et al. (2010) Structure of sterol aliphatic chains affects yeast cell shape and cell fusion during mating. Proc Natl Acad Sci U S A 107(9):4170-5 PMID:20150508
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Aguilar PS, et al. (2010) A plasma-membrane E-MAP reveals links of the eisosome with sphingolipid metabolism and endosomal trafficking. Nat Struct Mol Biol 17(7):901-8 PMID:20526336
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Engel A, et al. (2010) The yeast cell fusion protein Prm1p requires covalent dimerization to promote membrane fusion. PLoS One 5(5):e10593 PMID:20485669
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kornmann B and Walter P (2010) ERMES-mediated ER-mitochondria contacts: molecular hubs for the regulation of mitochondrial biology. J Cell Sci 123(Pt 9):1389-93 PMID:20410371
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Pincus D, et al. (2010) BiP binding to the ER-stress sensor Ire1 tunes the homeostatic behavior of the unfolded protein response. PLoS Biol 8(7):e1000415 PMID:20625545
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Walter P (2010) Walking along the serendipitous path of discovery. Mol Biol Cell 21(1):15-7 PMID:20048259
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Aragón T, et al. (2009) Messenger RNA targeting to endoplasmic reticulum stress signalling sites. Nature 457(7230):736-40 PMID:19079237
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Fröhlich F, et al. (2009) A genome-wide screen for genes affecting eisosomes reveals Nce102 function in sphingolipid signaling. J Cell Biol 185(7):1227-42 PMID:19564405
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Jonikas MC, et al. (2009) Comprehensive characterization of genes required for protein folding in the endoplasmic reticulum. Science 323(5922):1693-7 PMID:19325107
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Korennykh AV, et al. (2009) The unfolded protein response signals through high-order assembly of Ire1. Nature 457(7230):687-93 PMID:19079236
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kornmann B, et al. (2009) An ER-mitochondria tethering complex revealed by a synthetic biology screen. Science 325(5939):477-81 PMID:19556461
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Moreira KE, et al. (2009) Pil1 controls eisosome biogenesis. Mol Biol Cell 20(3):809-18 PMID:19037108
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Schuck S, et al. (2009) Membrane expansion alleviates endoplasmic reticulum stress independently of the unfolded protein response. J Cell Biol 187(4):525-36 PMID:19948500
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Engel A and Walter P (2008) Membrane lysis during biological membrane fusion: collateral damage by misregulated fusion machines. J Cell Biol 183(2):181-6 PMID:18852300
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Aguilar PS, et al. (2007) The plasma membrane proteins Prm1 and Fig1 ascertain fidelity of membrane fusion during yeast mating. Mol Biol Cell 18(2):547-56 PMID:17151357
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bernales S, et al. (2007) ER-phagy: selective autophagy of the endoplasmic reticulum. Autophagy 3(3):285-7 PMID:17351330
    • SGD Paper
    • DOI full text
    • PubMed
  • Haass FA, et al. (2007) Identification of yeast proteins necessary for cell-surface function of a potassium channel. Proc Natl Acad Sci U S A 104(46):18079-84 PMID:17989219
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Heiman MG, et al. (2007) The Golgi-resident protease Kex2 acts in conjunction with Prm1 to facilitate cell fusion during yeast mating. J Cell Biol 176(2):209-22 PMID:17210951
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Walther TC, et al. (2007) Pkh-kinases control eisosome assembly and organization. EMBO J 26(24):4946-55 PMID:18034155
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bernales S, et al. (2006) Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLoS Biol 4(12):e423 PMID:17132049
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Walther TC, et al. (2006) Eisosomes mark static sites of endocytosis. Nature 439(7079):998-1003 PMID:16496001
    • SGD Paper
    • DOI full text
    • PubMed
  • Credle JJ, et al. (2005) On the mechanism of sensing unfolded protein in the endoplasmic reticulum. Proc Natl Acad Sci U S A 102(52):18773-84 PMID:16365312
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Egea PF, et al. (2005) Targeting proteins to membranes: structure of the signal recognition particle. Curr Opin Struct Biol 15(2):213-20 PMID:15837181
    • SGD Paper
    • DOI full text
    • PubMed
  • Kaiser SE, et al. (2005) Structural basis of FFAT motif-mediated ER targeting. Structure 13(7):1035-45 PMID:16004875
    • SGD Paper
    • DOI full text
    • PubMed
  • Niwa M, et al. (2005) Genome-scale approaches for discovering novel nonconventional splicing substrates of the Ire1 nuclease. Genome Biol 6(1):R3 PMID:15642095
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Brickner JH and Walter P (2004) Gene recruitment of the activated INO1 locus to the nuclear membrane. PLoS Biol 2(11):e342 PMID:15455074
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Leber JH, et al. (2004) IRE1-independent gain control of the unfolded protein response. PLoS Biol 2(8):E235 PMID:15314654
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Patil CK, et al. (2004) Gcn4p and novel upstream activating sequences regulate targets of the unfolded protein response. PLoS Biol 2(8):E246 PMID:15314660
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Papa FR, et al. (2003) Bypassing a kinase activity with an ATP-competitive drug. Science 302(5650):1533-7 PMID:14564015
    • SGD Paper
    • DOI full text
    • PubMed
  • Helenius J, et al. (2002) Translocation of lipid-linked oligosaccharides across the ER membrane requires Rft1 protein. Nature 415(6870):447-50 PMID:11807558
    • SGD Paper
    • DOI full text
    • PubMed
  • Dong B, et al. (2001) Basis for regulated RNA cleavage by functional analysis of RNase L and Ire1p. RNA 7(3):361-73 PMID:11333017
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gonzalez TN and Walter P (2001) Ire1p: a kinase and site-specific endoribonuclease. Methods Mol Biol 160:25-36 PMID:11265288
    • SGD Paper
    • DOI full text
    • PubMed
  • Mutka SC and Walter P (2001) Multifaceted physiological response allows yeast to adapt to the loss of the signal recognition particle-dependent protein-targeting pathway. Mol Biol Cell 12(3):577-88 PMID:11251072
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
    • Reference supplement
  • Nock S, et al. (2001) Purification and activity assays of the catalytic domains of the kinase/endoribonuclease Ire1p from Saccharomyces cerevisiae. Methods Enzymol 342:3-10 PMID:11586903
    • SGD Paper
    • DOI full text
    • PubMed
  • Patil C and Walter P (2001) Intracellular signaling from the endoplasmic reticulum to the nucleus: the unfolded protein response in yeast and mammals. Curr Opin Cell Biol 13(3):349-55 PMID:11343907
    • SGD Paper
    • DOI full text
    • PubMed
  • Rüegsegger U, et al. (2001) Block of HAC1 mRNA translation by long-range base pairing is released by cytoplasmic splicing upon induction of the unfolded protein response. Cell 107(1):103-14 PMID:11595189
    • SGD Paper
    • DOI full text
    • PubMed
  • Senger B, et al. (2001) Yeast cytoplasmic and mitochondrial methionyl-tRNA synthetases: two structural frameworks for identical functions. J Mol Biol 311(1):205-16 PMID:11469869
    • SGD Paper
    • DOI full text
    • PubMed
  • Heiman MG and Walter P (2000) Prm1p, a pheromone-regulated multispanning membrane protein, facilitates plasma membrane fusion during yeast mating. J Cell Biol 151(3):719-30 PMID:11062271
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ng DT, et al. (2000) The unfolded protein response regulates multiple aspects of secretory and membrane protein biogenesis and endoplasmic reticulum quality control. J Cell Biol 150(1):77-88 PMID:10893258
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Niwa M and Walter P (2000) Pausing to decide. Proc Natl Acad Sci U S A 97(23):12396-7 PMID:11058174
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Travers KJ, et al. (2000) Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101(3):249-58 PMID:10847680
    • SGD Paper
    • DOI full text
    • PubMed
    • Reference supplement
  • Barz WP and Walter P (1999) Two endoplasmic reticulum (ER) membrane proteins that facilitate ER-to-Golgi transport of glycosylphosphatidylinositol-anchored proteins. Mol Biol Cell 10(4):1043-59 PMID:10198056
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Freymann DM, et al. (1999) Functional changes in the structure of the SRP GTPase on binding GDP and Mg2+GDP. Nat Struct Biol 6(8):793-801 PMID:10426959
    • SGD Paper
    • DOI full text
    • PubMed
  • Gonzalez TN, et al. (1999) Mechanism of non-spliceosomal mRNA splicing in the unfolded protein response pathway. EMBO J 18(11):3119-32 PMID:10357823
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Niwa M, et al. (1999) A role for presenilin-1 in nuclear accumulation of Ire1 fragments and induction of the mammalian unfolded protein response. Cell 99(7):691-702 PMID:10619423
    • SGD Paper
    • DOI full text
    • PubMed
  • Powers T and Walter P (1999) Regulation of ribosome biogenesis by the rapamycin-sensitive TOR-signaling pathway in Saccharomyces cerevisiae. Mol Biol Cell 10(4):987-1000 PMID:10198052
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Keenan RJ, et al. (1998) Crystal structure of the signal sequence binding subunit of the signal recognition particle. Cell 94(2):181-91 PMID:9695947
    • SGD Paper
    • DOI full text
    • PubMed
  • Ogg SC, et al. (1998) A functional GTPase domain, but not its transmembrane domain, is required for function of the SRP receptor beta-subunit. J Cell Biol 142(2):341-54 PMID:9679135
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Chapman RE and Walter P (1997) Translational attenuation mediated by an mRNA intron. Curr Biol 7(11):850-9 PMID:9382810
    • SGD Paper
    • DOI full text
    • PubMed
  • Cox JS, et al. (1997) The unfolded protein response coordinates the production of endoplasmic reticulum protein and endoplasmic reticulum membrane. Mol Biol Cell 8(9):1805-14 PMID:9307975
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Freymann DM, et al. (1997) Structure of the conserved GTPase domain of the signal recognition particle. Nature 385(6614):361-4 PMID:9002524
    • SGD Paper
    • DOI full text
    • PubMed
  • Nunnari J, et al. (1997) Mitochondrial transmission during mating in Saccharomyces cerevisiae is determined by mitochondrial fusion and fission and the intramitochondrial segregation of mitochondrial DNA. Mol Biol Cell 8(7):1233-42 PMID:9243504
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Powers T and Walter P (1997) A ribosome at the end of the tunnel. Science 278(5346):2072-3 PMID:9432719
    • SGD Paper
    • DOI full text
    • PubMed
  • Sidrauski C and Walter P (1997) The transmembrane kinase Ire1p is a site-specific endonuclease that initiates mRNA splicing in the unfolded protein response. Cell 90(6):1031-9 PMID:9323131
    • SGD Paper
    • DOI full text
    • PubMed
  • Aphasizhev R, et al. (1996) Conservation in evolution for a small monomeric phenylalanyl-tRNA synthetase of the tRNA(Phe) recognition nucleotides and initial aminoacylation site. Biochemistry 35(1):117-23 PMID:8555164
    • SGD Paper
    • DOI full text
    • PubMed
  • Cox JS and Walter P (1996) A novel mechanism for regulating activity of a transcription factor that controls the unfolded protein response. Cell 87(3):391-404 PMID:8898193
    • SGD Paper
    • DOI full text
    • PubMed
  • Ng DT and Walter P (1996) ER membrane protein complex required for nuclear fusion. J Cell Biol 132(4):499-509 PMID:8647883
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ng DT, et al. (1996) Signal sequences specify the targeting route to the endoplasmic reticulum membrane. J Cell Biol 134(2):269-78 PMID:8707814
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Shamu CE and Walter P (1996) Oligomerization and phosphorylation of the Ire1p kinase during intracellular signaling from the endoplasmic reticulum to the nucleus. EMBO J 15(12):3028-39 PMID:8670804
    • SGD Paper
    • PMC full text
    • PubMed
  • Sidrauski C, et al. (1996) tRNA ligase is required for regulated mRNA splicing in the unfolded protein response. Cell 87(3):405-13 PMID:8898194
    • SGD Paper
    • DOI full text
    • PubMed
  • Miller JD, et al. (1995) The beta subunit of the signal recognition particle receptor is a transmembrane GTPase that anchors the alpha subunit, a peripheral membrane GTPase, to the endoplasmic reticulum membrane. J Cell Biol 128(3):273-82 PMID:7844142
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ogg SC and Walter P (1995) SRP samples nascent chains for the presence of signal sequences by interacting with ribosomes at a discrete step during translation elongation. Cell 81(7):1075-84 PMID:7600575
    • SGD Paper
    • DOI full text
    • PubMed
  • Senger B, et al. (1995) The presence of a D-stem but not a T-stem is essential for triggering aminoacylation upon anticodon binding in yeast methionine tRNA. J Mol Biol 249(1):45-58 PMID:7776375
    • SGD Paper
    • DOI full text
    • PubMed
  • Brown JD, et al. (1994) Subunits of the Saccharomyces cerevisiae signal recognition particle required for its functional expression. EMBO J 13(18):4390-400 PMID:7925282
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Vettese-Dadey M, et al. (1994) Role of the histone amino termini in facilitated binding of a transcription factor, GAL4-AH, to nucleosome cores. Mol Cell Biol 14(2):970-81 PMID:8289837
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cox JS, et al. (1993) Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. Cell 73(6):1197-206 PMID:8513503
    • SGD Paper
    • DOI full text
    • PubMed
  • Nunnari J, et al. (1993) A mitochondrial protease with two catalytic subunits of nonoverlapping specificities. Science 262(5142):1997-2004 PMID:8266095
    • SGD Paper
    • DOI full text
    • PubMed
  • Despons L, et al. (1992) Binding of the yeast tRNA(Met) anticodon by the cognate methionyl-tRNA synthetase involves at least two independent peptide regions. J Mol Biol 225(3):897-907 PMID:1602489
    • SGD Paper
    • DOI full text
    • PubMed
  • Green N, et al. (1992) Mutants in three novel complementation groups inhibit membrane protein insertion into and soluble protein translocation across the endoplasmic reticulum membrane of Saccharomyces cerevisiae. J Cell Biol 116(3):597-604 PMID:1730771
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hann BC, et al. (1992) SEC65 gene product is a subunit of the yeast signal recognition particle required for its integrity. Nature 356(6369):532-3 PMID:1313947
    • SGD Paper
    • DOI full text
    • PubMed
  • Nunnari J and Walter P (1992) Protein targeting to and translocation across the membrane of the endoplasmic reticulum. Curr Opin Cell Biol 4(4):573-80 PMID:1419037
    • SGD Paper
    • DOI full text
    • PubMed
  • Ogg SC, et al. (1992) Signal recognition particle receptor is important for cell growth and protein secretion in Saccharomyces cerevisiae. Mol Biol Cell 3(8):895-911 PMID:1327299
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Despons L, et al. (1991) Identification of potential amino acid residues supporting anticodon recognition in yeast methionyl-tRNA synthetase. FEBS Lett 289(2):217-20 PMID:1915850
    • SGD Paper
    • DOI full text
    • PubMed
  • Hann BC and Walter P (1991) The signal recognition particle in S. cerevisiae. Cell 67(1):131-44 PMID:1655273
    • SGD Paper
    • DOI full text
    • PubMed
  • Sanni A, et al. (1991) Evolution of aminoacyl-tRNA synthetase quaternary structure and activity: Saccharomyces cerevisiae mitochondrial phenylalanyl-tRNA synthetase. Proc Natl Acad Sci U S A 88(19):8387-91 PMID:1924298
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zopf D, et al. (1990) The methionine-rich domain of the 54 kd protein subunit of the signal recognition particle contains an RNA binding site and can be crosslinked to a signal sequence. EMBO J 9(13):4511-7 PMID:1702385
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Green GN, et al. (1989) The use of gene-fusions to determine membrane protein topology in Saccharomyces cerevisiae. J Cell Sci Suppl 11:109-13 PMID:2693456
    • SGD Paper
    • DOI full text
    • PubMed
  • Hann BC, et al. (1989) Saccharomyces cerevisiae and Schizosaccharomyces pombe contain a homologue to the 54-kD subunit of the signal recognition particle that in S. cerevisiae is essential for growth. J Cell Biol 109(6 Pt 2):3223-30 PMID:2557350
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ngsee JK, et al. (1989) Cassette mutagenic analysis of the yeast invertase signal peptide: effects on protein translocation. Mol Cell Biol 9(8):3400-10 PMID:2677671
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Strub K and Walter P (1989) Isolation of a cDNA clone of the 14-kDa subunit of the signal recognition particle by cross-hybridization of differently primed polymerase chain reactions. Proc Natl Acad Sci U S A 86(24):9747-51 PMID:2557625
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Walter P, et al. (1989) Deletion analysis in the amino-terminal extension of methionyl-tRNA synthetase from Saccharomyces cerevisiae shows that a small region is important for the activity and stability of the enzyme. J Biol Chem 264(29):17126-30 PMID:2677000
    • SGD Paper
    • PubMed
  • Chatton B, et al. (1988) The yeast VAS1 gene encodes both mitochondrial and cytoplasmic valyl-tRNA synthetases. J Biol Chem 263(1):52-7 PMID:3275649
    • SGD Paper
    • PubMed
  • Hansen W and Walter P (1988) Prepro-carboxypeptidase Y and a truncated form of pre-invertase, but not full-length pre-invertase, can be posttranslationally translocated across microsomal vesicle membranes from Saccharomyces cerevisiae. J Cell Biol 106(4):1075-81 PMID:3283144
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Fasiolo F, et al. (1985) Cytoplasmic methionyl-tRNA synthetase from Bakers' yeast. A monomer with a post-translationally modified N terminus. J Biol Chem 260(29):15571-6 PMID:3905796
    • SGD Paper
    • PubMed
  • Walter P, et al. (1983) Primary structure of the Saccharomyces cerevisiae gene for methionyl-tRNA synthetase. Proc Natl Acad Sci U S A 80(9):2437-41 PMID:6341994
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top