AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Ushimaru T
  • References

Author: Ushimaru T


References 51 references


No citations for this author.

Download References (.nbib)

  • Takahashi Y, et al. (2025) The Greatwall kinase Rim15 promotes microautophagy and microlipophagy under the control of TORC1. Biochem Biophys Res Commun 752:151468 PMID:39952117
    • SGD Paper
    • DOI full text
    • PubMed
  • Tasnin MN, et al. (2025) ESCRT mediates micronucleophagy and macronucleophagy in yeast. Biochem Biophys Res Commun 742:151102 PMID:39642706
    • SGD Paper
    • DOI full text
    • PubMed
  • Tasnin MN, et al. (2025) Nuclear ESCRT is involved in intranuclear protein quality control by micronucleophagy. Biochem Biophys Res Commun 744:151219 PMID:39721364
    • SGD Paper
    • DOI full text
    • PubMed
  • Tasnin MN, et al. (2025) ESCRT elicits vacuolar fission in the absence of Vps4 in budding yeast. Biochem Biophys Res Commun 746:151244 PMID:39756210
    • SGD Paper
    • DOI full text
    • PubMed
  • Manik MIN, et al. (2024) The yeast VAPs Scs2 and Scs22 are required for NVJ integrity and micronucleophagy. Biochem Biophys Res Commun 734:150628 PMID:39232457
    • SGD Paper
    • DOI full text
    • PubMed
  • Takeichi Y, et al. (2022) Interphase chromosome condensation in nutrient-starved conditions requires Cdc14 and Hmo1, but not condensin, in yeast. Biochem Biophys Res Commun 611:46-52 PMID:35477092
    • SGD Paper
    • DOI full text
    • PubMed
  • Takuma T and Ushimaru T (2022) Vacuolar fragmentation promotes fluxes of microautophagy and micronucleophagy but not of macroautophagy. Biochem Biophys Res Commun 614:161-168 PMID:35597153
    • SGD Paper
    • DOI full text
    • PubMed
  • Tasnin MN, et al. (2022) The PI3 Kinase Complex II-PI3P-Vps27 Axis on Vacuolar Membranes is Critical for Microautophagy Induction and Nutrient Stress Adaptation. J Mol Biol 434(2):167360 PMID:34798133
    • SGD Paper
    • DOI full text
    • PubMed
  • Yamada C, et al. (2022) TORC1 inactivation promotes APC/C-dependent mitotic slippage in yeast and human cells. iScience 25(2):103675 PMID:35141499
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mostofa MG, et al. (2021) Cdc14 protein phosphatase and topoisomerase II mediate rDNA dynamics and nucleophagic degradation of nucleolar proteins after TORC1 inactivation. Cell Signal 79:109884 PMID:33321182
    • SGD Paper
    • DOI full text
    • PubMed
  • Sharmin T, et al. (2021) Sorting nexin Mdm1/SNX14 regulates nucleolar dynamics at the NVJ after TORC1 inactivation. Biochem Biophys Res Commun 552:1-8 PMID:33740659
    • SGD Paper
    • DOI full text
    • PubMed
  • Sharmin T, et al. (2021) Cdc14 phosphatase downmodulates ESCRT-0 complex formation on vacuolar membranes and microautophagy after TORC1 inactivation. Biochem Biophys Res Commun 561:158-164 PMID:34023781
    • SGD Paper
    • DOI full text
    • PubMed
  • Tasnin MN, et al. (2021) The vacuole controls nucleolar dynamics and micronucleophagy via the NVJ. Biochem Biophys Res Commun 550:158-165 PMID:33706099
    • SGD Paper
    • DOI full text
    • PubMed
  • Daicho K, et al. (2020) TORC1 ensures membrane trafficking of Tat2 tryptophan permease via a novel transcriptional activator Vhr2 in budding yeast. Cell Signal 68:109542 PMID:31954176
    • SGD Paper
    • DOI full text
    • PubMed
  • Morshed S, et al. (2020) TORC1 regulates ESCRT-0 complex formation on the vacuolar membrane and microautophagy induction in yeast. Biochem Biophys Res Commun 522(1):88-94 PMID:31740006
    • SGD Paper
    • DOI full text
    • PubMed
  • Morshed S, et al. (2020) TORC1 regulates G1/S transition and cell proliferation via the E2F homologs MBF and SBF in yeast. Biochem Biophys Res Commun 529(3):846-853 PMID:32553629
    • SGD Paper
    • DOI full text
    • PubMed
  • Morshed S, et al. (2020) ESCRT machinery plays a role in microautophagy in yeast. BMC Mol Cell Biol 21(1):70 PMID:33028189
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sharmin T, et al. (2020) PP2A promotes ESCRT-0 complex formation on vacuolar membranes and microautophagy induction after TORC1 inactivation. Biochem Biophys Res Commun 524(3):614-620 PMID:32029270
    • SGD Paper
    • DOI full text
    • PubMed
  • Miyamoto I, et al. (2019) TORC1 regulates the DNA damage checkpoint via checkpoint protein levels. Biochem Biophys Res Commun 510(4):629-635 PMID:30745106
    • SGD Paper
    • DOI full text
    • PubMed
  • Morshed S, et al. (2019) Def1 mediates the degradation of excess nucleolar protein Nop1 in budding yeast. Biochem Biophys Res Commun 519(2):302-308 PMID:31506176
    • SGD Paper
    • DOI full text
    • PubMed
  • Mostofa MG, et al. (2019) rDNA Condensation Promotes rDNA Separation from Nucleolar Proteins Degraded for Nucleophagy after TORC1 Inactivation. Cell Rep 28(13):3423-3434.e2 PMID:31553911
    • SGD Paper
    • DOI full text
    • PubMed
  • Suda K, et al. (2019) TORC1 regulates autophagy induction in response to proteotoxic stress in yeast and human cells. Biochem Biophys Res Commun 511(2):434-439 PMID:30797551
    • SGD Paper
    • DOI full text
    • PubMed
  • Ueda S, et al. (2019) TORC1, Tel1/Mec1, and Mpk1 regulate autophagy induction after DNA damage in budding yeast. Cell Signal 62:109344 PMID:31201849
    • SGD Paper
    • DOI full text
    • PubMed
  • Koike N, et al. (2018) Heat shock transcriptional factor mediates mitochondrial unfolded protein response. Curr Genet 64(4):907-917 PMID:29423676
    • SGD Paper
    • DOI full text
    • PubMed
  • Kondo A, et al. (2018) Cdc14 Phosphatase Promotes TORC1-Regulated Autophagy in Yeast. J Mol Biol 430(11):1671-1684 PMID:29694832
    • SGD Paper
    • DOI full text
    • PubMed
  • Mostofa MG, et al. (2018) CLIP and cohibin separate rDNA from nucleolar proteins destined for degradation by nucleophagy. J Cell Biol 217(8):2675-2690 PMID:29959231
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Nagai M, et al. (2018) Cdh1 degradation is mediated by APC/C-Cdh1 and SCF-Cdc4 in budding yeast. Biochem Biophys Res Commun 506(4):932-938 PMID:30396569
    • SGD Paper
    • DOI full text
    • PubMed
  • Rahman MA, et al. (2018) The Nem1/Spo7-Pah1/lipin axis is required for autophagy induction after TORC1 inactivation. FEBS J 285(10):1840-1860 PMID:29604183
    • SGD Paper
    • DOI full text
    • PubMed
  • Rahman MA, et al. (2018) The TORC1-Nem1/Spo7-Pah1/lipin axis regulates microautophagy induction in budding yeast. Biochem Biophys Res Commun 504(2):505-512 PMID:30201264
    • SGD Paper
    • DOI full text
    • PubMed
  • Yamamoto K, et al. (2018) CDK phosphorylation regulates Mcm3 degradation in budding yeast. Biochem Biophys Res Commun 506(3):680-684 PMID:30376991
    • SGD Paper
    • DOI full text
    • PubMed
  • Yamamoto K, et al. (2018) TORC1 signaling regulates DNA replication via DNA replication protein levels. Biochem Biophys Res Commun 505(4):1128-1133 PMID:30316513
    • SGD Paper
    • DOI full text
    • PubMed
  • Waliullah TM, et al. (2017) Rim15 and Sch9 kinases are involved in induction of autophagic degradation of ribosomes in budding yeast. Biosci Biotechnol Biochem 81(2):307-310 PMID:27659307
    • SGD Paper
    • DOI full text
    • PubMed
  • Hatano Y, et al. (2016) Positive feedback promotes mitotic exit via the APC/C-Cdh1-separase-Cdc14 axis in budding yeast. Cell Signal 28(10):1545-54 PMID:27418100
    • SGD Paper
    • DOI full text
    • PubMed
  • Shimizu Y, et al. (2016) Elucidation of novel budding yeast separase mutants. Biosci Biotechnol Biochem 80(3):473-8 PMID:26523765
    • SGD Paper
    • DOI full text
    • PubMed
  • Yeasmin AM, et al. (2016) Orchestrated Action of PP2A Antagonizes Atg13 Phosphorylation and Promotes Autophagy after the Inactivation of TORC1. PLoS One 11(12):e0166636 PMID:27973551
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Maegawa K, et al. (2015) Evolutionary conservation of TORC1 components, TOR, Raptor, and LST8, between rice and yeast. Mol Genet Genomics 290(5):2019-30 PMID:25956502
    • SGD Paper
    • DOI full text
    • PubMed
  • Yeasmin AM, et al. (2015) Yvh1 protein phosphatase is required for pre-autophagosomal structure formation after TORC1 inactivation. Biosci Biotechnol Biochem 79(12):2022-5 PMID:26125457
    • SGD Paper
    • DOI full text
    • PubMed
  • Nagai M and Ushimaru T (2014) Cdh1 is an antagonist of the spindle assembly checkpoint. Cell Signal 26(10):2217-22 PMID:25025567
    • SGD Paper
    • DOI full text
    • PubMed
  • Nakaya S, et al. (2014) Anti-aging and anti-microbial effects of melleolide on various types of yeast. Biosci Biotechnol Biochem 78(3):455-7 PMID:25036832
    • SGD Paper
    • DOI full text
    • PubMed
  • Nakaya S, et al. (2012) New rapid screening method for anti-aging compounds using budding yeast and identification of beauveriolide I as a potent active compound. Biosci Biotechnol Biochem 76(6):1226-8 PMID:22790951
    • SGD Paper
    • DOI full text
    • PubMed
  • Toda K, et al. (2012) APC/C-Cdh1-dependent anaphase and telophase progression during mitotic slippage. Cell Div 7:4 PMID:22321970
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hagiwara T, et al. (2011) Apoptosis at inflection point in liquid culture of budding yeasts. PLoS One 6(4):e19224 PMID:21556367
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Daicho K, et al. (2009) Sorting defects of the tryptophan permease Tat2 in an erg2 yeast mutant. FEMS Microbiol Lett 298(2):218-27 PMID:19659576
    • SGD Paper
    • DOI full text
    • PubMed
  • Chouduri AU, et al. (2008) Functional and biochemical characterization of the 20S proteasome in a yeast temperature-sensitive mutant, rpt6-1. BMC Biochem 9:20 PMID:18644121
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Daicho K, et al. (2007) The ergosterol biosynthesis inhibitor zaragozic acid promotes vacuolar degradation of the tryptophan permease Tat2p in yeast. Biochim Biophys Acta 1768(7):1681-90 PMID:17531951
    • SGD Paper
    • DOI full text
    • PubMed
  • Honma Y, et al. (2006) TOR regulates late steps of ribosome maturation in the nucleoplasm via Nog1 in response to nutrients. EMBO J 25(16):3832-42 PMID:16888624
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tainaka K, et al. (2006) Stage-dependent density effect in the cell cycle of budding yeast. J Theor Biol 242(3):736-42 PMID:16765991
    • SGD Paper
    • DOI full text
    • PubMed
  • Ono Y, et al. (2003) A novel allele of fission yeast rad11 that causes defects in DNA repair and telomere length regulation. Nucleic Acids Res 31(24):7141-9 PMID:14654689
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Nakashima A, et al. (2002) Involvement of a CCAAT-binding complex in the expression of a nitrogen-starvation-specific gene, isp6+, in Schizosaccharomyces pombe. Biosci Biotechnol Biochem 66(10):2224-7 PMID:12450137
    • SGD Paper
    • DOI full text
    • PubMed
  • Tachibana T, et al. (2002) A novel non-conventional heat shock element regulates expression of MDJ1 encoding a DnaJ homolog in Saccharomyces cerevisiae. J Biol Chem 277(25):22140-6 PMID:11940587
    • SGD Paper
    • DOI full text
    • PubMed
  • Crespo JL, et al. (2001) The GATA transcription factors GLN3 and GAT1 link TOR to salt stress in Saccharomyces cerevisiae. J Biol Chem 276(37):34441-4 PMID:11457832
    • SGD Paper
    • DOI full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top