AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Uhlmann F
  • References

Author: Uhlmann F


References 80 references


No citations for this author.

Download References (.nbib)

  • Takacs L, et al. (2025) Evidence of substrate control of Cdk phosphorylation during the budding yeast cell cycle. Cell Rep 44(4):115534 PMID:40220295
    • SGD Paper
    • DOI full text
    • PubMed
  • Uhlmann F (2025) A unified model for cohesin function in sisterchromatid cohesion and chromatin loop formation. Mol Cell 85(6):1058-1071 PMID:40118039
    • SGD Paper
    • DOI full text
    • PubMed
  • Guérin TM, et al. (2024) An extrinsic motor directs chromatin loop formation by cohesin. EMBO J 43(19):4173-4196 PMID:39160275
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Minamino M, et al. (2023) A replication fork determinant for the establishment of sister chromatid cohesion. Cell 186(4):837-849.e11 PMID:36693376
    • SGD Paper
    • DOI full text
    • PubMed
  • Shrestha S, et al. (2023) Replisome-cohesin interactions provided by the Tof1-Csm3 and Mrc1 cohesion establishment factors. Chromosoma 132(2):117-135 PMID:37166686
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kakui Y, et al. (2022) Chromosome arm length, and a species-specific determinant, define chromosome arm width. Cell Rep 41(10):111753 PMID:36476849
    • SGD Paper
    • DOI full text
    • PubMed
  • Mattingly M, et al. (2022) Mediator recruits the cohesin loader Scc2 to RNA Pol II-transcribed genes and promotes sister chromatid cohesion. Curr Biol 32(13):2884-2896.e6 PMID:35654035
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Muñoz S, et al. (2022) Functional crosstalk between the cohesin loader and chromatin remodelers. Nat Commun 13(1):7698 PMID:36509793
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lancaster L, et al. (2021) A role for condensin in mediating transcriptional adaptation to environmental stimuli. Life Sci Alliance 4(7) PMID:34083394
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Pirincci Ercan D and Uhlmann F (2021) Analysis of Cell Cycle Progression in the Budding Yeast S. cerevisiae. Methods Mol Biol 2329:265-276 PMID:34085229
    • SGD Paper
    • DOI full text
    • PubMed
  • Pirincci Ercan D, et al. (2021) Budding yeast relies on G1 cyclin specificity to couple cell cycle progression with morphogenetic development. Sci Adv 7(23) PMID:34088668
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ryu JK, et al. (2021) Bridging-induced phase separation induced by cohesin SMC protein complexes. Sci Adv 7(7) PMID:33568486
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Jones AW, et al. (2020) Assessing Budding Yeast Phosphoproteome Dynamics in a Time-Resolved Manner using TMT10plex Mass Tag Labeling. STAR Protoc 1(1):100022 PMID:32685930
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Liu HW, et al. (2020) Division of Labor between PCNA Loaders in DNA Replication and Sister Chromatid Cohesion Establishment. Mol Cell 78(4):725-738.e4 PMID:32277910
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Muñoz S, et al. (2019) A Role for Chromatin Remodeling in Cohesin Loading onto Chromosomes. Mol Cell 74(4):664-673.e5 PMID:30922844
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Touati SA, et al. (2019) Cdc14 and PP2A Phosphatases Cooperate to Shape Phosphoproteome Dynamics during Mitotic Exit. Cell Rep 29(7):2105-2119.e4 PMID:31722221
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kataria M, et al. (2018) A PxL motif promotes timely cell cycle substrate dephosphorylation by the Cdc14 phosphatase. Nat Struct Mol Biol 25(12):1093-1102 PMID:30455435
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Minamino M, et al. (2018) Topological in vitro loading of the budding yeast cohesin ring onto DNA. Life Sci Alliance 1(5) PMID:30381802
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Murayama Y, et al. (2018) Establishment of DNA-DNA Interactions by the Cohesin Ring. Cell 172(3):465-477.e15 PMID:29358048
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Thadani R, et al. (2018) Cell-Cycle Regulation of Dynamic Chromosome Association of the Condensin Complex. Cell Rep 23(8):2308-2317 PMID:29791843
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Touati SA and Uhlmann F (2018) A global view of substrate phosphorylation and dephosphorylation during budding yeast mitotic exit. Microb Cell 5(8):389-392 PMID:30175109
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Touati SA, et al. (2018) Phosphoproteome dynamics during mitotic exit in budding yeast. EMBO J 37(10) PMID:29650682
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Chao WC, et al. (2017) Structural Basis of Eco1-Mediated Cohesin Acetylation. Sci Rep 7:44313 PMID:28290497
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Chao WC, et al. (2017) Structure of the cohesin loader Scc2. Nat Commun 8:13952 PMID:28059076
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Godfrey M, et al. (2017) PP2ACdc55 Phosphatase Imposes Ordered Cell-Cycle Phosphorylation by Opposing Threonine Phosphorylation. Mol Cell 65(3):393-402.e3 PMID:28132839
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mariezcurrena A and Uhlmann F (2017) Observation of DNA intertwining along authentic budding yeast chromosomes. Genes Dev 31(21):2151-2161 PMID:29208645
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wade BO, et al. (2017) Structural studies of RFC(C)(tf18) reveal a novel chromatin recruitment role for Dcc1. EMBO Rep 18(4): 558-568. PMID:28188145
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ocampo-Hafalla M, et al. (2016) Evidence for cohesin sliding along budding yeast chromosomes. Open Biol 6(6) PMID:27278645
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Samora CP, et al. (2016) Ctf4 Links DNA Replication with Sister Chromatid Cohesion Establishment by Recruiting the Chl1 Helicase to the Replisome. Mol Cell 63(3):371-84 PMID:27397686
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cheng TM, et al. (2015) A simple biophysical model emulates budding yeast chromosome condensation. Elife 4:e05565 PMID:25922992
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Godfrey M, et al. (2015) Nur1 dephosphorylation confers positive feedback to mitotic exit phosphatase activation in budding yeast. PLoS Genet 11(1):e1004907 PMID:25569132
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kuilman T, et al. (2015) Identification of Cdk targets that control cytokinesis. EMBO J 34(1):81-96 PMID:25371407
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Murayama Y and Uhlmann F (2015) DNA Entry into and Exit out of the Cohesin Ring by an Interlocking Gate Mechanism. Cell 163(7):1628-40 PMID:26687354
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Thadani R and Uhlmann F (2015) Chromosome condensation: weaving an untangled web. Curr Biol 25(15):R663-6 PMID:26241143
    • SGD Paper
    • DOI full text
    • PubMed
  • Charbin A, et al. (2014) Condensin aids sister chromatid decatenation by topoisomerase II. Nucleic Acids Res 42(1):340-8 PMID:24062159
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lopez-Serra L, et al. (2014) The Scc2-Scc4 complex acts in sister chromatid cohesion and transcriptional regulation by maintaining nucleosome-free regions. Nat Genet 46(10):1147-51 PMID:25173104
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Borges V, et al. (2013) An Eco1-independent sister chromatid cohesion establishment pathway in S. cerevisiae. Chromosoma 122(1-2):121-34 PMID:23334284
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lopez-Serra L, et al. (2013) Budding yeast Wapl controls sister chromatid cohesion maintenance and chromosome condensation. Curr Biol 23(1):64-9 PMID:23219725
    • SGD Paper
    • DOI full text
    • PubMed
  • O'Reilly N, et al. (2012) Facile synthesis of budding yeast a-factor and its use to synchronize cells of α mating type. Yeast 29(6):233-40 PMID:22641466
    • SGD Paper
    • DOI full text
    • PubMed
  • Bouchoux C and Uhlmann F (2011) A quantitative model for ordered Cdk substrate dephosphorylation during mitotic exit. Cell 147(4):803-14 PMID:22078879
    • SGD Paper
    • DOI full text
    • PubMed
  • Ocampo-Hafalla MT and Uhlmann F (2011) Cohesin loading and sliding. J Cell Sci 124(Pt 5):685-91 PMID:21321326
    • SGD Paper
    • DOI full text
    • PubMed
  • Vinod PK, et al. (2011) Computational modelling of mitotic exit in budding yeast: the role of separase and Cdc14 endocycles. J R Soc Interface 8(61):1128-41 PMID:21288956
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Borges V, et al. (2010) Hos1 deacetylates Smc3 to close the cohesin acetylation cycle. Mol Cell 39(5):677-88 PMID:20832720
    • SGD Paper
    • DOI full text
    • PubMed
  • Mirchenko L and Uhlmann F (2010) Sli15(INCENP) dephosphorylation prevents mitotic checkpoint reengagement due to loss of tension at anaphase onset. Curr Biol 20(15):1396-401 PMID:20619650
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Vázquez-Novelle MD, et al. (2010) The 'anaphase problem': how to disable the mitotic checkpoint when sisters split. Biochem Soc Trans 38(6):1660-6 PMID:21118144
    • SGD Paper
    • DOI full text
    • PubMed
  • Csikász-Nagy A, et al. (2009) Cell cycle regulation by feed-forward loops coupling transcription and phosphorylation. Mol Syst Biol 5:236 PMID:19156128
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • López-Avilés S, et al. (2009) Irreversibility of mitotic exit is the consequence of systems-level feedback. Nature 459(7246):592-5 PMID:19387440
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mendoza M, et al. (2009) A mechanism for chromosome segregation sensing by the NoCut checkpoint. Nat Cell Biol 11(4):477-83 PMID:19270692
    • SGD Paper
    • DOI full text
    • PubMed
  • D'Ambrosio C, et al. (2008) Identification of cis-acting sites for condensin loading onto budding yeast chromosomes. Genes Dev 22(16):2215-27 PMID:18708580
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • D'Ambrosio C, et al. (2008) Condensin-dependent rDNA decatenation introduces a temporal pattern to chromosome segregation. Curr Biol 18(14):1084-9 PMID:18635352
    • SGD Paper
    • DOI full text
    • PubMed
  • Queralt E and Uhlmann F (2008) Cdk-counteracting phosphatases unlock mitotic exit. Curr Opin Cell Biol 20(6):661-8 PMID:18845253
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Queralt E and Uhlmann F (2008) Separase cooperates with Zds1 and Zds2 to activate Cdc14 phosphatase in early anaphase. J Cell Biol 182(5):873-83 PMID:18762578
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rolef Ben-Shahar T, et al. (2008) Eco1-dependent cohesin acetylation during establishment of sister chromatid cohesion. Science 321(5888):563-6 PMID:18653893
    • SGD Paper
    • DOI full text
    • PubMed
  • Mc Intyre J, et al. (2007) In vivo analysis of cohesin architecture using FRET in the budding yeast Saccharomyces cerevisiae. EMBO J 26(16):3783-93 PMID:17660750
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ocampo-Hafalla MT, et al. (2007) Displacement and re-accumulation of centromeric cohesin during transient pre-anaphase centromere splitting. Chromosoma 116(6):531-44 PMID:17763979
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tóth A, et al. (2007) Mitotic exit in two dimensions. J Theor Biol 248(3):560-73 PMID:17659305
    • SGD Paper
    • DOI full text
    • PubMed
  • Lengronne A, et al. (2006) Establishment of sister chromatid cohesion at the S. cerevisiae replication fork. Mol Cell 23(6):787-99 PMID:16962805
    • SGD Paper
    • DOI full text
    • PubMed
  • Queralt E, et al. (2006) Downregulation of PP2A(Cdc55) phosphatase by separase initiates mitotic exit in budding yeast. Cell 125(4):719-32 PMID:16713564
    • SGD Paper
    • DOI full text
    • PubMed
  • Uhlmann F and Hopfner KP (2006) Chromosome biology: the crux of the ring. Curr Biol 16(3):R102-5 PMID:16461262
    • SGD Paper
    • DOI full text
    • PubMed
  • Higuchi T and Uhlmann F (2005) Stabilization of microtubule dynamics at anaphase onset promotes chromosome segregation. Nature 433(7022):171-6 PMID:15650742
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hornig NC and Uhlmann F (2004) Preferential cleavage of chromatin-bound cohesin after targeted phosphorylation by Polo-like kinase. EMBO J 23(15):3144-53 PMID:15241476
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lengronne A, et al. (2004) Cohesin relocation from sites of chromosomal loading to places of convergent transcription. Nature 430(6999):573-8 PMID:15229615
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sullivan M, et al. (2004) Cdc14 phosphatase induces rDNA condensation and resolves cohesin-independent cohesion during budding yeast anaphase. Cell 117(4):471-82 PMID:15137940
    • SGD Paper
    • DOI full text
    • PubMed
  • Sullivan M, et al. (2004) Studies on substrate recognition by the budding yeast separase. J Biol Chem 279(2):1191-6 PMID:14585836
    • SGD Paper
    • DOI full text
    • PubMed
  • Uhlmann F (2004) The mechanism of sister chromatid cohesion. Exp Cell Res 296(1):80-5 PMID:15120997
    • SGD Paper
    • DOI full text
    • PubMed
  • Buonomo SB, et al. (2003) Division of the nucleolus and its release of CDC14 during anaphase of meiosis I depends on separase, SPO12, and SLK19. Dev Cell 4(5):727-39 PMID:12737807
    • SGD Paper
    • DOI full text
    • PubMed
  • Sullivan M and Uhlmann F (2003) A non-proteolytic function of separase links the onset of anaphase to mitotic exit. Nat Cell Biol 5(3):249-54 PMID:12598903
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Weitzer S, et al. (2003) A model for ATP hydrolysis-dependent binding of cohesin to DNA. Curr Biol 13(22):1930-40 PMID:14614818
    • SGD Paper
    • DOI full text
    • PubMed
  • Hornig NC, et al. (2002) The dual mechanism of separase regulation by securin. Curr Biol 12(12):973-82 PMID:12123570
    • SGD Paper
    • DOI full text
    • PubMed
  • Alexandru G, et al. (2001) Phosphorylation of the cohesin subunit Scc1 by Polo/Cdc5 kinase regulates sister chromatid separation in yeast. Cell 105(4):459-72 PMID:11371343
    • SGD Paper
    • DOI full text
    • PubMed
  • Rao H, et al. (2001) Degradation of a cohesin subunit by the N-end rule pathway is essential for chromosome stability. Nature 410(6831):955-9 PMID:11309624
    • SGD Paper
    • DOI full text
    • PubMed
  • Sullivan M, et al. (2001) Orchestrating anaphase and mitotic exit: separase cleavage and localization of Slk19. Nat Cell Biol 3(9):771-7 PMID:11533655
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Uhlmann F (2001) Secured cutting: controlling separase at the metaphase to anaphase transition. EMBO Rep 2(6):487-92 PMID:11415980
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Buonomo SB, et al. (2000) Disjunction of homologous chromosomes in meiosis I depends on proteolytic cleavage of the meiotic cohesin Rec8 by separin. Cell 103(3):387-98 PMID:11081626
    • SGD Paper
    • DOI full text
    • PubMed
  • Nasmyth K, et al. (2000) Splitting the chromosome: cutting the ties that bind sister chromatids. Science 288(5470):1379-85 PMID:10827941
    • SGD Paper
    • DOI full text
    • PubMed
  • Tomonaga T, et al. (2000) Characterization of fission yeast cohesin: essential anaphase proteolysis of Rad21 phosphorylated in the S phase. Genes Dev 14(21):2757-70 PMID:11069892
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Uhlmann F, et al. (2000) Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast. Cell 103(3):375-86 PMID:11081625
    • SGD Paper
    • DOI full text
    • PubMed
  • Tóth A, et al. (1999) Yeast cohesin complex requires a conserved protein, Eco1p(Ctf7), to establish cohesion between sister chromatids during DNA replication. Genes Dev 13(3):320-33 PMID:9990856
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Uhlmann F, et al. (1999) Sister-chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scc1. Nature 400(6739):37-42 PMID:10403247
    • SGD Paper
    • DOI full text
    • PubMed
  • Uhlmann F and Nasmyth K (1998) Cohesion between sister chromatids must be established during DNA replication. Curr Biol 8(20):1095-101 PMID:9778527
    • SGD Paper
    • DOI full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top