AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Sung P
  • References

Author: Sung P


References 179 references


No citations for this author.

Download References (.nbib)

  • Rogers CM and Sung P (2025) Deciphering the fate of replication-induced DNA double-strand breaks. Mol Cell 85(1):3-4 PMID:39753106
    • SGD Paper
    • DOI full text
    • PubMed
  • Crickard JB, et al. (2024) Correction: Dynamic interactions of the homologous pairing 2 (Hop2)-meiotic nuclear divisions 1 (Mnd1) protein complex with meiotic presynaptic filaments in budding yeast. J Biol Chem 300(5):107298 PMID:38678833
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mustafi M, et al. (2023) Single-molecule visualization of Pif1 helicase translocation on single-stranded DNA. J Biol Chem 299(6):104817 PMID:37178921
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Dutta A, et al. (2022) Biochemical Analysis of RNA-DNA Hybrid and R-Loop Unwinding Via Motor Proteins. Methods Mol Biol 2528:305-316 PMID:35704200
    • SGD Paper
    • DOI full text
    • PubMed
  • Meir A, et al. (2022) Rad54 and Rdh54 prevent Srs2-mediated disruption of Rad51 presynaptic filaments. Proc Natl Acad Sci U S A 119(4) PMID:35042797
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kwon Y and Sung P (2021) Biochemical Analysis of D-Loop Extension and DNA Strand Displacement Synthesis. Methods Mol Biol 2153:87-99 PMID:32840774
    • SGD Paper
    • DOI full text
    • PubMed
  • Roy U, et al. (2021) The Rad51 paralog complex Rad55-Rad57 acts as a molecular chaperone during homologous recombination. Mol Cell 81(5):1043-1057.e8 PMID:33421364
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Roy U, et al. (2021) Single-molecule studies of yeast Rad51 paralogs. Methods Enzymol 661:343-362 PMID:34776219
    • SGD Paper
    • DOI full text
    • PubMed
  • Crickard JB, et al. (2020) Rad54 and Rdh54 occupy spatially and functionally distinct sites within the Rad51-ssDNA presynaptic complex. EMBO J 39(20):e105705 PMID:32790929
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Crickard JB, et al. (2020) Rad54 Drives ATP Hydrolysis-Dependent DNA Sequence Alignment during Homologous Recombination. Cell 181(6):1380-1394.e18 PMID:32502392
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Daley JM, et al. (2020) Specificity of end resection pathways for double-strand break regions containing ribonucleotides and base lesions. Nat Commun 11(1):3088 PMID:32555206
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Biswas H, et al. (2019) Ddc2ATRIP promotes Mec1ATR activation at RPA-ssDNA tracts. PLoS Genet 15(8):e1008294 PMID:31369547
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Crickard JB, et al. (2019) Dynamic interactions of the homologous pairing 2 (Hop2)-meiotic nuclear divisions 1 (Mnd1) protein complex with meiotic presynaptic filaments in budding yeast. J Biol Chem 294(2):490-501 PMID:30420424
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Crickard JB, et al. (2019) The RecQ helicase Sgs1 drives ATP-dependent disruption of Rad51 filaments. Nucleic Acids Res 47(9):4694-4706 PMID:30916344
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rosenbaum JC, et al. (2019) The Rad51 paralogs facilitate a novel DNA strand specific damage tolerance pathway. Nat Commun 10(1):3515 PMID:31383866
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Xue C, et al. (2019) Regulatory control of Sgs1 and Dna2 during eukaryotic DNA end resection. Proc Natl Acad Sci U S A 116(13):6091-6100 PMID:30850524
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yan Z, et al. (2019) Rad52 Restrains Resection at DNA Double-Strand Break Ends in Yeast. Mol Cell 76(5):699-711.e6 PMID:31542296
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cassani C, et al. (2018) Structurally distinct Mre11 domains mediate MRX functions in resection, end-tethering and DNA damage resistance. Nucleic Acids Res 46(6):2990-3008 PMID:29420790
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cheng X, et al. (2018) Phospho-dependent recruitment of the yeast NuA4 acetyltransferase complex by MRX at DNA breaks regulates RPA dynamics during resection. Proc Natl Acad Sci U S A 115(40):10028-10033 PMID:30224481
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Crickard JB, et al. (2018) Meiosis-specific recombinase Dmc1 is a potent inhibitor of the Srs2 antirecombinase. Proc Natl Acad Sci U S A 115(43):E10041-E10048 PMID:30301803
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Crickard JB, et al. (2018) Regulation of Hed1 and Rad54 binding during maturation of the meiosis-specific presynaptic complex. EMBO J 37(7) PMID:29444896
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Crickard JB, et al. (2018) Spontaneous self-segregation of Rad51 and Dmc1 DNA recombinases within mixed recombinase filaments. J Biol Chem 293(11):4191-4200 PMID:29382724
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gobbini E, et al. (2018) The MRX complex regulates Exo1 resection activity by altering DNA end structure. EMBO J 37(16) PMID:29925516
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wang W, et al. (2018) A DNA nick at Ku-blocked double-strand break ends serves as an entry site for exonuclease 1 (Exo1) or Sgs1-Dna2 in long-range DNA end resection. J Biol Chem 293(44):17061-17069 PMID:30224356
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Adkins NL, et al. (2017) Nucleosome-like, Single-stranded DNA (ssDNA)-Histone Octamer Complexes and the Implication for DNA Double Strand Break Repair. J Biol Chem 292(13):5271-5281 PMID:28202543
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Buzovetsky O, et al. (2017) Role of the Pif1-PCNA Complex in Pol δ-Dependent Strand Displacement DNA Synthesis and Break-Induced Replication. Cell Rep 21(7):1707-1714 PMID:29141206
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Daley JM, et al. (2017) Enhancement of BLM-DNA2-Mediated Long-Range DNA End Resection by CtIP. Cell Rep 21(2):324-332 PMID:29020620
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • De Tullio L, et al. (2017) Yeast Srs2 Helicase Promotes Redistribution of Single-Stranded DNA-Bound RPA and Rad52 in Homologous Recombination Regulation. Cell Rep 21(3):570-577 PMID:29045827
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kaniecki K, et al. (2017) Dissociation of Rad51 Presynaptic Complexes and Heteroduplex DNA Joints by Tandem Assemblies of Srs2. Cell Rep 21(11):3166-3177 PMID:29241544
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kumar S, et al. (2017) Inhibition of DNA2 nuclease as a therapeutic strategy targeting replication stress in cancer cells. Oncogenesis 6(4):e319 PMID:28414320
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kwon Y and Sung P (2017) Rad52, Maestro of Inverse Strand Exchange. Mol Cell 67(1):1-3 PMID:28686872
    • SGD Paper
    • DOI full text
    • PubMed
  • Lee JY, et al. (2017) Sequence imperfections and base triplet recognition by the Rad51/RecA family of recombinases. J Biol Chem 292(26):11125-11135 PMID:28476890
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Miller AS, et al. (2017) A novel role of the Dna2 translocase function in DNA break resection. Genes Dev 31(5):503-510 PMID:28336516
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wang W, et al. (2017) Plasticity of the Mre11-Rad50-Xrs2-Sae2 nuclease ensemble in the processing of DNA-bound obstacles. Genes Dev 31(23-24):2331-2336 PMID:29321177
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bonner JN, et al. (2016) Smc5/6 Mediated Sumoylation of the Sgs1-Top3-Rmi1 Complex Promotes Removal of Recombination Intermediates. Cell Rep 16(2):368-378 PMID:27373152
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cassani C, et al. (2016) Tel1 and Rif2 Regulate MRX Functions in End-Tethering and Repair of DNA Double-Strand Breaks. PLoS Biol 14(2):e1002387 PMID:26901759
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Chen X, et al. (2016) Enrichment of Cdk1-cyclins at DNA double-strand breaks stimulates Fun30 phosphorylation and DNA end resection. Nucleic Acids Res 44(6):2742-53 PMID:26801641
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Niu H, et al. (2016) Roles of DNA helicases and Exo1 in the avoidance of mutations induced by Top1-mediated cleavage at ribonucleotides in DNA. Cell Cycle 15(3):331-6 PMID:26716562
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Xue X, et al. (2016) Differential regulation of the anti-crossover and replication fork regression activities of Mph1 by Mte1. Genes Dev 30(6):687-99 PMID:26966246
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Daley JM, et al. (2015) Biochemical mechanism of DSB end resection and its regulation. DNA Repair (Amst) 32:66-74 PMID:25956866
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gaines WA, et al. (2015) Promotion of presynaptic filament assembly by the ensemble of S. cerevisiae Rad51 paralogues with Rad52. Nat Commun 6:7834 PMID:26215801
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Krasner DS, et al. (2015) Interplay between Ku and Replication Protein A in the Restriction of Exo1-mediated DNA Break End Resection. J Biol Chem 290(30):18806-16 PMID:26067273
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lee JY, et al. (2015) DNA RECOMBINATION. Base triplet stepping by the Rad51/RecA family of recombinases. Science 349(6251):977-81 PMID:26315438
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Puddu F, et al. (2015) Synthetic viability genomic screening defines Sae2 function in DNA repair. EMBO J 34(11):1509-22 PMID:25899817
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Qi Z, et al. (2015) DNA sequence alignment by microhomology sampling during homologous recombination. Cell 160(5):856-869 PMID:25684365
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Qiu Y, et al. (2015) Molecular mechanism of resolving trinucleotide repeat hairpin by helicases. Structure 23(6):1018-27 PMID:26004439
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Xue X, et al. (2015) Selective modulation of the functions of a conserved DNA motor by a histone fold complex. Genes Dev 29(10):1000-5 PMID:25956905
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gibb B, et al. (2014) Protein dynamics during presynaptic-complex assembly on individual single-stranded DNA molecules. Nat Struct Mol Biol 21(10):893-900 PMID:25195049
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gibb B, et al. (2014) Concentration-dependent exchange of replication protein A on single-stranded DNA revealed by single-molecule imaging. PLoS One 9(2):e87922 PMID:24498402
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Liu Y, et al. (2014) Down-regulation of Rad51 activity during meiosis in yeast prevents competition with Dmc1 for repair of double-strand breaks. PLoS Genet 10(1):e1004005 PMID:24465215
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Potenski CJ, et al. (2014) Avoidance of ribonucleotide-induced mutations by RNase H2 and Srs2-Exo1 mechanisms. Nature 511(7508):251-4 PMID:24896181
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Xue X, et al. (2014) Restriction of replication fork regression activities by a conserved SMC complex. Mol Cell 56(3):436-445 PMID:25439736
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Adkins NL, et al. (2013) Nucleosome dynamics regulates DNA processing. Nat Struct Mol Biol 20(7):836-42 PMID:23728291
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Busygina V, et al. (2013) Functional attributes of the Saccharomyces cerevisiae meiotic recombinase Dmc1. DNA Repair (Amst) 12(9):707-12 PMID:23769192
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Daley JM, et al. (2013) Investigations of homologous recombination pathways and their regulation. Yale J Biol Med 86(4):453-61 PMID:24348209
    • SGD Paper
    • PMC full text
    • PubMed
  • Daley JM, et al. (2013) Roles of DNA helicases in the mediation and regulation of homologous recombination. Adv Exp Med Biol 767:185-202 PMID:23161012
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Li F, et al. (2013) Role of Saw1 in Rad1/Rad10 complex assembly at recombination intermediates in budding yeast. EMBO J 32(3):461-72 PMID:23299942
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Santa Maria SR, et al. (2013) Characterization of the interaction between the Saccharomyces cerevisiae Rad51 recombinase and the DNA translocase Rdh54. J Biol Chem 288(30):21999-2005 PMID:23798704
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wilson MA, et al. (2013) Pif1 helicase and Polδ promote recombination-coupled DNA synthesis via bubble migration. Nature 502(7471):393-6 PMID:24025768
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Xue X, et al. (2013) Role of replication protein A in double holliday junction dissolution mediated by the BLM-Topo IIIα-RMI1-RMI2 protein complex. J Biol Chem 288(20):14221-14227 PMID:23543748
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Anand RP, et al. (2012) Overcoming natural replication barriers: differential helicase requirements. Nucleic Acids Res 40(3):1091-105 PMID:21984413
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Busygina V, et al. (2012) Novel attributes of Hed1 affect dynamics and activity of the Rad51 presynaptic filament during meiotic recombination. J Biol Chem 287(2):1566-75 PMID:22115747
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Daee DL, et al. (2012) Rad5-dependent DNA repair functions of the Saccharomyces cerevisiae FANCM protein homolog Mph1. J Biol Chem 287(32):26563-75 PMID:22696213
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Chen X, et al. (2011) Cell cycle regulation of DNA double-strand break end resection by Cdk1-dependent Dna2 phosphorylation. Nat Struct Mol Biol 18(9):1015-9 PMID:21841787
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Chi P, et al. (2011) Analyses of the yeast Rad51 recombinase A265V mutant reveal different in vivo roles of Swi2-like factors. Nucleic Acids Res 39(15):6511-22 PMID:21558173
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Flott S, et al. (2011) Regulation of Rad51 function by phosphorylation. EMBO Rep 12(8):833-9 PMID:21738226
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Fukunaga K, et al. (2011) Activation of protein kinase Tel1 through recognition of protein-bound DNA ends. Mol Cell Biol 31(10):1959-71 PMID:21402778
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hohl M, et al. (2011) The Rad50 coiled-coil domain is indispensable for Mre11 complex functions. Nat Struct Mol Biol 18(10):1124-31 PMID:21892167
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Oum JH, et al. (2011) RSC facilitates Rad59-dependent homologous recombination between sister chromatids by promoting cohesin loading at DNA double-strand breaks. Mol Cell Biol 31(19):3924-37 PMID:21807899
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Say AF, et al. (2011) The budding yeast Mei5-Sae3 complex interacts with Rad51 and preferentially binds a DNA fork structure. DNA Repair (Amst) 10(6):586-94 PMID:21543267
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zheng XF, et al. (2011) Processing of DNA structures via DNA unwinding and branch migration by the S. cerevisiae Mph1 protein. DNA Repair (Amst) 10(10):1034-43 PMID:21880555
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Altmannova V, et al. (2010) Rad52 SUMOylation affects the efficiency of the DNA repair. Nucleic Acids Res 38(14):4708-21 PMID:20371517
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Colavito S, et al. (2010) Promotion and regulation of homologous recombination by DNA helicases. Methods 51(3):329-35 PMID:20156560
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Niu H, et al. (2010) Mechanism of the ATP-dependent DNA end-resection machinery from Saccharomyces cerevisiae. Nature 467(7311):108-11 PMID:20811460
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Burgess RC, et al. (2009) Localization of recombination proteins and Srs2 reveals anti-recombinase function in vivo. J Cell Biol 185(6):969-81 PMID:19506039
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Chi P, et al. (2009) Functional interactions of meiotic recombination factors Rdh54 and Dmc1. DNA Repair (Amst) 8(2):279-84 PMID:19028606
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Colavito S, et al. (2009) Functional significance of the Rad51-Srs2 complex in Rad51 presynaptic filament disruption. Nucleic Acids Res 37(20):6754-64 PMID:19745052
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Matulova P, et al. (2009) Cooperativity of Mus81.Mms4 with Rad54 in the resolution of recombination and replication intermediates. J Biol Chem 284(12):7733-45 PMID:19129197
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Niu H, et al. (2009) Regulation of meiotic recombination via Mek1-mediated Rad54 phosphorylation. Mol Cell 36(3):393-404 PMID:19917248
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Niu H, et al. (2009) Multiplicity of DNA end resection machineries in chromosome break repair. Genes Dev 23(13):1481-6 PMID:19571177
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Prakash R, et al. (2009) Yeast Mph1 helicase dissociates Rad51-made D-loops: implications for crossover control in mitotic recombination. Genes Dev 23(1):67-79 PMID:19136626
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Robertson RB, et al. (2009) Visualizing the disassembly of S. cerevisiae Rad51 nucleoprotein filaments. J Mol Biol 388(4):703-20 PMID:19327367
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Seong C, et al. (2009) Regulation of Rad51 recombinase presynaptic filament assembly via interactions with the Rad52 mediator and the Srs2 anti-recombinase. J Biol Chem 284(36):24363-71 PMID:19605344
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Shi I, et al. (2009) Role of the Rad52 amino-terminal DNA binding activity in DNA strand capture in homologous recombination. J Biol Chem 284(48):33275-84 PMID:19812039
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Busygina V, et al. (2008) Hed1 regulates Rad51-mediated recombination via a novel mechanism. Genes Dev 22(6):786-95 PMID:18347097
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kwon Y, et al. (2008) ATP-dependent chromatin remodeling by the Saccharomyces cerevisiae homologous recombination factor Rdh54. J Biol Chem 283(16):10445-52 PMID:18292093
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Plate I, et al. (2008) Rad52 multimerization is important for its nuclear localization in Saccharomyces cerevisiae. DNA Repair (Amst) 7(1):57-66 PMID:17888746
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Plate I, et al. (2008) Interaction with RPA is necessary for Rad52 repair center formation and for its mediator activity. J Biol Chem 283(43):29077-85 PMID:18703507
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • San Filippo J, et al. (2008) Mechanism of eukaryotic homologous recombination. Annu Rev Biochem 77:229-57 PMID:18275380
    • SGD Paper
    • DOI full text
    • PubMed
  • Seong C, et al. (2008) Molecular anatomy of the recombination mediator function of Saccharomyces cerevisiae Rad52. J Biol Chem 283(18):12166-74 PMID:18310075
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sheridan SD, et al. (2008) A comparative analysis of Dmc1 and Rad51 nucleoprotein filaments. Nucleic Acids Res 36(12):4057-66 PMID:18535008
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sung P (2008) Structural insights into DNA lesion bypass. Structure 16(2):161-2 PMID:18275807
    • SGD Paper
    • DOI full text
    • PubMed
  • Chi P, et al. (2007) Bipartite stimulatory action of the Hop2-Mnd1 complex on the Rad51 recombinase. Genes Dev 21(14):1747-57 PMID:17639080
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kwon Y, et al. (2007) Synergistic action of the Saccharomyces cerevisiae homologous recombination factors Rad54 and Rad51 in chromatin remodeling. DNA Repair (Amst) 6(10):1496-506 PMID:17544928
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Prasad TK, et al. (2007) A DNA-translocating Snf2 molecular motor: Saccharomyces cerevisiae Rdh54 displays processive translocation and extrudes DNA loops. J Mol Biol 369(4):940-53 PMID:17467735
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Xie Y, et al. (2007) The yeast Hex3.Slx8 heterodimer is a ubiquitin ligase stimulated by substrate sumoylation. J Biol Chem 282(47):34176-84 PMID:17848550
    • SGD Paper
    • DOI full text
    • PubMed
  • Zhang Y, et al. (2007) Role of Dnl4-Lif1 in nonhomologous end-joining repair complex assembly and suppression of homologous recombination. Nat Struct Mol Biol 14(7):639-46 PMID:17589524
    • SGD Paper
    • DOI full text
    • PubMed
  • Chi P, et al. (2006) Yeast recombination factor Rdh54 functionally interacts with the Rad51 recombinase and catalyzes Rad51 removal from DNA. J Biol Chem 281(36):26268-79 PMID:16831867
    • SGD Paper
    • DOI full text
    • PubMed
  • Desfarges S, et al. (2006) Chromosomal integration of LTR-flanked DNA in yeast expressing HIV-1 integrase: down regulation by RAD51. Nucleic Acids Res 34(21):6215-24 PMID:17090598
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Van Komen S, et al. (2006) Purification and assays of Saccharomyces cerevisiae homologous recombination proteins. Methods Enzymol 408:445-63 PMID:16793386
    • SGD Paper
    • DOI full text
    • PubMed
  • Chen L, et al. (2005) Effect of amino acid substitutions in the rad50 ATP binding domain on DNA double strand break repair in yeast. J Biol Chem 280(4):2620-7 PMID:15546877
    • SGD Paper
    • DOI full text
    • PubMed
  • Macris MA and Sung P (2005) Multifaceted role of the Saccharomyces cerevisiae Srs2 helicase in homologous recombination regulation. Biochem Soc Trans 33(Pt 6):1447-50 PMID:16246143
    • SGD Paper
    • DOI full text
    • PubMed
  • Papouli E, et al. (2005) Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p. Mol Cell 19(1):123-33 PMID:15989970
    • SGD Paper
    • DOI full text
    • PubMed
  • Prakash R, et al. (2005) Saccharomyces cerevisiae MPH1 gene, required for homologous recombination-mediated mutation avoidance, encodes a 3' to 5' DNA helicase. J Biol Chem 280(9):7854-60 PMID:15634678
    • SGD Paper
    • DOI full text
    • PubMed
  • Krejci L, et al. (2004) Role of ATP hydrolysis in the antirecombinase function of Saccharomyces cerevisiae Srs2 protein. J Biol Chem 279(22):23193-9 PMID:15047689
    • SGD Paper
    • DOI full text
    • PubMed
  • Lewis LK, et al. (2004) Role of the nuclease activity of Saccharomyces cerevisiae Mre11 in repair of DNA double-strand breaks in mitotic cells. Genetics 166(4):1701-13 PMID:15126391
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Raschle M, et al. (2004) Multiple interactions with the Rad51 recombinase govern the homologous recombination function of Rad54. J Biol Chem 279(50):51973-80 PMID:15465810
    • SGD Paper
    • DOI full text
    • PubMed
  • Smirnova M, et al. (2004) Effects of tumor-associated mutations on Rad54 functions. J Biol Chem 279(23):24081-8 PMID:15056673
    • SGD Paper
    • DOI full text
    • PubMed
  • de Jager M, et al. (2004) Differential arrangements of conserved building blocks among homologs of the Rad50/Mre11 DNA repair protein complex. J Mol Biol 339(4):937-49 PMID:15165861
    • SGD Paper
    • DOI full text
    • PubMed
  • Jaskelioff M, et al. (2003) Rad54p is a chromatin remodeling enzyme required for heteroduplex DNA joint formation with chromatin. J Biol Chem 278(11):9212-8 PMID:12514177
    • SGD Paper
    • DOI full text
    • PubMed
  • Krejci L, et al. (2003) Mending the break: two DNA double-strand break repair machines in eukaryotes. Prog Nucleic Acid Res Mol Biol 74:159-201 PMID:14510076
    • SGD Paper
    • DOI full text
    • PubMed
  • Krejci L, et al. (2003) DNA helicase Srs2 disrupts the Rad51 presynaptic filament. Nature 423(6937):305-9 PMID:12748644
    • SGD Paper
    • DOI full text
    • PubMed
  • Mallory JC, et al. (2003) Amino acid changes in Xrs2p, Dun1p, and Rfa2p that remove the preferred targets of the ATM family of protein kinases do not affect DNA repair or telomere length in Saccharomyces cerevisiae. DNA Repair (Amst) 2(9):1041-64 PMID:12967660
    • SGD Paper
    • DOI full text
    • PubMed
  • Sung P, et al. (2003) Rad51 recombinase and recombination mediators. J Biol Chem 278(44):42729-32 PMID:12912992
    • SGD Paper
    • DOI full text
    • PubMed
  • Trujillo KM, et al. (2003) Yeast xrs2 binds DNA and helps target rad50 and mre11 to DNA ends. J Biol Chem 278(49):48957-64 PMID:14522986
    • SGD Paper
    • DOI full text
    • PubMed
  • Van Komen S, et al. (2003) ATPase and DNA helicase activities of the Saccharomyces cerevisiae anti-recombinase Srs2. J Biol Chem 278(45):44331-7 PMID:12966095
    • SGD Paper
    • DOI full text
    • PubMed
  • Wolner B, et al. (2003) Recruitment of the recombinational repair machinery to a DNA double-strand break in yeast. Mol Cell 12(1):221-32 PMID:12887907
    • SGD Paper
    • DOI full text
    • PubMed
  • Krejci L and Sung P (2002) Of forks and ends. Trends Biochem Sci 27(5):225-6 PMID:12076528
    • SGD Paper
    • DOI full text
    • PubMed
  • Krejci L, et al. (2002) Interaction with Rad51 is indispensable for recombination mediator function of Rad52. J Biol Chem 277(42):40132-41 PMID:12171935
    • SGD Paper
    • DOI full text
    • PubMed
  • Van Komen S, et al. (2002) Functional cross-talk among Rad51, Rad54, and replication protein A in heteroduplex DNA joint formation. J Biol Chem 277(46):43578-87 PMID:12226081
    • SGD Paper
    • DOI full text
    • PubMed
  • Anderson DE, et al. (2001) Structure of the Rad50 x Mre11 DNA repair complex from Saccharomyces cerevisiae by electron microscopy. J Biol Chem 276(40):37027-33 PMID:11470800
    • SGD Paper
    • DOI full text
    • PubMed
  • Chen L, et al. (2001) Promotion of Dnl4-catalyzed DNA end-joining by the Rad50/Mre11/Xrs2 and Hdf1/Hdf2 complexes. Mol Cell 8(5):1105-15 PMID:11741545
    • SGD Paper
    • DOI full text
    • PubMed
  • Rice KP, et al. (2001) DNA pairing and strand exchange by the Escherichia coli RecA and yeast Rad51 proteins without ATP hydrolysis: on the importance of not getting stuck. J Biol Chem 276(42):38570-81 PMID:11504729
    • SGD Paper
    • DOI full text
    • PubMed
  • Sigurdsson S, et al. (2001) Mediator function of the human Rad51B-Rad51C complex in Rad51/RPA-catalyzed DNA strand exchange. Genes Dev 15(24):3308-18 PMID:11751636
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Trujillo KM and Sung P (2001) DNA structure-specific nuclease activities in the Saccharomyces cerevisiae Rad50*Mre11 complex. J Biol Chem 276(38):35458-64 PMID:11454871
    • SGD Paper
    • DOI full text
    • PubMed
  • Mazin AV, et al. (2000) Tailed duplex DNA is the preferred substrate for Rad51 protein-mediated homologous pairing. EMBO J 19(5):1148-56 PMID:10698955
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Petukhova G, et al. (2000) Promotion of Rad51-dependent D-loop formation by yeast recombination factor Rdh54/Tid1. Genes Dev 14(17):2206-15 PMID:10970884
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Song B and Sung P (2000) Functional interactions among yeast Rad51 recombinase, Rad52 mediator, and replication protein A in DNA strand exchange. J Biol Chem 275(21):15895-904 PMID:10748203
    • SGD Paper
    • DOI full text
    • PubMed
  • Sung P, et al. (2000) Recombination factors of Saccharomyces cerevisiae. Mutat Res 451(1-2):257-75 PMID:10915877
    • SGD Paper
    • DOI full text
    • PubMed
  • Van Komen S, et al. (2000) Superhelicity-driven homologous DNA pairing by yeast recombination factors Rad51 and Rad54. Mol Cell 6(3):563-72 PMID:11030336
    • SGD Paper
    • DOI full text
    • PubMed
  • Dasika GK, et al. (1999) DNA damage-induced cell cycle checkpoints and DNA strand break repair in development and tumorigenesis. Oncogene 18(55):7883-99 PMID:10630641
    • SGD Paper
    • DOI full text
    • PubMed
  • Guzder SN, et al. (1999) Synergistic interaction between yeast nucleotide excision repair factors NEF2 and NEF4 in the binding of ultraviolet-damaged DNA. J Biol Chem 274(34):24257-62 PMID:10446201
    • SGD Paper
    • DOI full text
    • PubMed
  • Petukhova G, et al. (1999) Single strand DNA binding and annealing activities in the yeast recombination factor Rad59. J Biol Chem 274(48):33839-42 PMID:10567339
    • SGD Paper
    • DOI full text
    • PubMed
  • Petukhova G, et al. (1999) Yeast Rad54 promotes Rad51-dependent homologous DNA pairing via ATP hydrolysis-driven change in DNA double helix conformation. J Biol Chem 274(41):29453-62 PMID:10506208
    • SGD Paper
    • DOI full text
    • PubMed
  • Guzder SN, et al. (1998) Affinity of yeast nucleotide excision repair factor 2, consisting of the Rad4 and Rad23 proteins, for ultraviolet damaged DNA. J Biol Chem 273(47):31541-6 PMID:9813069
    • SGD Paper
    • DOI full text
    • PubMed
  • Guzder SN, et al. (1998) The DNA-dependent ATPase activity of yeast nucleotide excision repair factor 4 and its role in DNA damage recognition. J Biol Chem 273(11):6292-6 PMID:9497356
    • SGD Paper
    • DOI full text
    • PubMed
  • Habraken Y, et al. (1998) ATP-dependent assembly of a ternary complex consisting of a DNA mismatch and the yeast MSH2-MSH6 and MLH1-PMS1 protein complexes. J Biol Chem 273(16):9837-41 PMID:9545323
    • SGD Paper
    • DOI full text
    • PubMed
  • Petukhova G, et al. (1998) Catalysis of homologous DNA pairing by yeast Rad51 and Rad54 proteins. Nature 393(6680):91-4 PMID:9590697
    • SGD Paper
    • DOI full text
    • PubMed
  • Guzder SN, et al. (1997) Yeast Rad7-Rad16 complex, specific for the nucleotide excision repair of the nontranscribed DNA strand, is an ATP-dependent DNA damage sensor. J Biol Chem 272(35):21665-8 PMID:9268290
    • SGD Paper
    • DOI full text
    • PubMed
  • Habraken Y, et al. (1997) Enhancement of MSH2-MSH3-mediated mismatch recognition by the yeast MLH1-PMS1 complex. Curr Biol 7(10):790-3 PMID:9368761
    • SGD Paper
    • DOI full text
    • PubMed
  • Sung P (1997) Function of yeast Rad52 protein as a mediator between replication protein A and the Rad51 recombinase. J Biol Chem 272(45):28194-7 PMID:9353267
    • SGD Paper
    • DOI full text
    • PubMed
  • Sung P (1997) Yeast Rad55 and Rad57 proteins form a heterodimer that functions with replication protein A to promote DNA strand exchange by Rad51 recombinase. Genes Dev 11(9):1111-21 PMID:9159392
    • SGD Paper
    • DOI full text
    • PubMed
  • Guzder SN, et al. (1996) RAD26, the yeast homolog of human Cockayne's syndrome group B gene, encodes a DNA-dependent ATPase. J Biol Chem 271(31):18314-7 PMID:8702468
    • SGD Paper
    • DOI full text
    • PubMed
  • Guzder SN, et al. (1996) Nucleotide excision repair in yeast is mediated by sequential assembly of repair factors and not by a pre-assembled repairosome. J Biol Chem 271(15):8903-10 PMID:8621533
    • SGD Paper
    • DOI full text
    • PubMed
  • Habraken Y, et al. (1996) Binding of insertion/deletion DNA mismatches by the heterodimer of yeast mismatch repair proteins MSH2 and MSH3. Curr Biol 6(9):1185-7 PMID:8805366
    • SGD Paper
    • DOI full text
    • PubMed
  • Habraken Y, et al. (1996) Transcription factor TFIIH and DNA endonuclease Rad2 constitute yeast nucleotide excision repair factor 3: implications for nucleotide excision repair and Cockayne syndrome. Proc Natl Acad Sci U S A 93(20):10718-22 PMID:8855246
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Johnson RE, et al. (1996) Evidence for involvement of yeast proliferating cell nuclear antigen in DNA mismatch repair. J Biol Chem 271(45):27987-90 PMID:8910404
    • SGD Paper
    • DOI full text
    • PubMed
  • Lauder S, et al. (1996) Dual requirement for the yeast MMS19 gene in DNA repair and RNA polymerase II transcription. Mol Cell Biol 16(12):6783-93 PMID:8943333
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sung P and Stratton SA (1996) Yeast Rad51 recombinase mediates polar DNA strand exchange in the absence of ATP hydrolysis. J Biol Chem 271(45):27983-6 PMID:8910403
    • SGD Paper
    • DOI full text
    • PubMed
  • Sung P, et al. (1996) Reconstitution of TFIIH and requirement of its DNA helicase subunits, Rad3 and Rad25, in the incision step of nucleotide excision repair. J Biol Chem 271(18):10821-6 PMID:8631896
    • SGD Paper
    • DOI full text
    • PubMed
  • Guzder SN, et al. (1995) Lethality in yeast of trichothiodystrophy (TTD) mutations in the human xeroderma pigmentosum group D gene. Implications for transcriptional defect in TTD. J Biol Chem 270(30):17660-3 PMID:7629061
    • SGD Paper
    • DOI full text
    • PubMed
  • Guzder SN, et al. (1995) Yeast DNA repair protein RAD23 promotes complex formation between transcription factor TFIIH and DNA damage recognition factor RAD14. J Biol Chem 270(15):8385-8 PMID:7721729
    • SGD Paper
    • DOI full text
    • PubMed
  • Guzder SN, et al. (1995) Reconstitution of yeast nucleotide excision repair with purified Rad proteins, replication protein A, and transcription factor TFIIH. J Biol Chem 270(22):12973-6 PMID:7768886
    • SGD Paper
    • DOI full text
    • PubMed
  • Habraken Y, et al. (1995) Structure-specific nuclease activity in yeast nucleotide excision repair protein Rad2. J Biol Chem 270(50):30194-8 PMID:8530429
    • SGD Paper
    • DOI full text
    • PubMed
  • Sung P and Robberson DL (1995) DNA strand exchange mediated by a RAD51-ssDNA nucleoprotein filament with polarity opposite to that of RecA. Cell 82(3):453-61 PMID:7634335
    • SGD Paper
    • DOI full text
    • PubMed
  • Bailly V, et al. (1994) Specific complex formation between yeast RAD6 and RAD18 proteins: a potential mechanism for targeting RAD6 ubiquitin-conjugating activity to DNA damage sites. Genes Dev 8(7):811-20 PMID:7926769
    • SGD Paper
    • DOI full text
    • PubMed
  • Guzder SN, et al. (1994) DNA repair gene RAD3 of S. cerevisiae is essential for transcription by RNA polymerase II. Nature 367(6458):91-4 PMID:8107780
    • SGD Paper
    • DOI full text
    • PubMed
  • Guzder SN, et al. (1994) RAD25 is a DNA helicase required for DNA repair and RNA polymerase II transcription. Nature 369(6481):578-81 PMID:8202161
    • SGD Paper
    • DOI full text
    • PubMed
  • Habraken Y, et al. (1994) Holliday junction cleavage by yeast Rad1 protein. Nature 371(6497):531-4 PMID:7935767
    • SGD Paper
    • DOI full text
    • PubMed
  • Habraken Y, et al. (1994) A conserved 5' to 3' exonuclease activity in the yeast and human nucleotide excision repair proteins RAD2 and XPG. J Biol Chem 269(50):31342-5 PMID:7989298
    • SGD Paper
    • PubMed
  • Sung P (1994) Catalysis of ATP-dependent homologous DNA pairing and strand exchange by yeast RAD51 protein. Science 265(5176):1241-3 PMID:8066464
    • SGD Paper
    • DOI full text
    • PubMed
  • Sung P, et al. (1994) Negative superhelicity promotes ATP-dependent binding of yeast RAD3 protein to ultraviolet-damaged DNA. J Biol Chem 269(11):8303-8 PMID:8132553
    • SGD Paper
    • PubMed
  • Guzder SN, et al. (1993) Yeast DNA-repair gene RAD14 encodes a zinc metalloprotein with affinity for ultraviolet-damaged DNA. Proc Natl Acad Sci U S A 90(12):5433-7 PMID:8516285
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Habraken Y, et al. (1993) Yeast excision repair gene RAD2 encodes a single-stranded DNA endonuclease. Nature 366(6453):365-8 PMID:8247134
    • SGD Paper
    • DOI full text
    • PubMed
  • Prakash S, et al. (1993) DNA repair genes and proteins of Saccharomyces cerevisiae. Annu Rev Genet 27:33-70 PMID:8122907
    • SGD Paper
    • DOI full text
    • PubMed
  • Sung P, et al. (1993) Purification and characterization of the Saccharomyces cerevisiae RAD1/RAD10 endonuclease. J Biol Chem 268(35):26391-9 PMID:8253764
    • SGD Paper
    • PubMed
  • Sung P, et al. (1993) Human xeroderma pigmentosum group D gene encodes a DNA helicase. Nature 365(6449):852-5 PMID:8413672
    • SGD Paper
    • DOI full text
    • PubMed
  • Watkins JF, et al. (1993) The extremely conserved amino terminus of RAD6 ubiquitin-conjugating enzyme is essential for amino-end rule-dependent protein degradation. Genes Dev 7(2):250-61 PMID:8436296
    • SGD Paper
    • DOI full text
    • PubMed
  • Watkins JF, et al. (1993) The Saccharomyces cerevisiae DNA repair gene RAD23 encodes a nuclear protein containing a ubiquitin-like domain required for biological function. Mol Cell Biol 13(12):7757-65 PMID:8246991
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bailly V, et al. (1992) Specific complex formation between proteins encoded by the yeast DNA repair and recombination genes RAD1 and RAD10. Proc Natl Acad Sci U S A 89(17):8273-7 PMID:1518857
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sung P, et al. (1992) Renaturation of DNA catalysed by yeast DNA repair and recombination protein RAD10. Nature 355(6362):743-5 PMID:1741062
    • SGD Paper
    • DOI full text
    • PubMed
  • Bailly V, et al. (1991) DNA.RNA helicase activity of RAD3 protein of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 88(21):9712-6 PMID:1719538
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sung P, et al. (1991) Stable ester conjugate between the Saccharomyces cerevisiae RAD6 protein and ubiquitin has no biological activity. J Mol Biol 221(3):745-9 PMID:1658333
    • SGD Paper
    • DOI full text
    • PubMed
  • Sung P, et al. (1991) Yeast RAD6 encoded ubiquitin conjugating enzyme mediates protein degradation dependent on the N-end-recognizing E3 enzyme. EMBO J 10(8):2187-93 PMID:2065660
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sung P, et al. (1990) Mutation of cysteine-88 in the Saccharomyces cerevisiae RAD6 protein abolishes its ubiquitin-conjugating activity and its various biological functions. Proc Natl Acad Sci U S A 87(7):2695-9 PMID:2157209
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sung P, et al. (1988) Mutation of lysine-48 to arginine in the yeast RAD3 protein abolishes its ATPase and DNA helicase activities but not the ability to bind ATP. EMBO J 7(10):3263-9 PMID:2846277
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sung P, et al. (1988) The RAD6 protein of Saccharomyces cerevisiae polyubiquitinates histones, and its acidic domain mediates this activity. Genes Dev 2(11):1476-85 PMID:2850263
    • SGD Paper
    • DOI full text
    • PubMed
  • Sung P, et al. (1987) The RAD3 gene of Saccharomyces cerevisiae encodes a DNA-dependent ATPase. Proc Natl Acad Sci U S A 84(17):6045-9 PMID:2957691
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sung P, et al. (1987) RAD3 protein of Saccharomyces cerevisiae is a DNA helicase. Proc Natl Acad Sci U S A 84(24):8951-5 PMID:2827162
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top