AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Shinohara A
  • References

Author: Shinohara A


References 69 references


No citations for this author.

Download References (.nbib)

  • Dash S, et al. (2024) Heterozygosity alters Msh5 binding to meiotic chromosomes in the baker's yeast. Genetics 226(3) PMID:38124392
    • SGD Paper
    • DOI full text
    • PubMed
  • Fajish G, et al. (2024) DNA double-strand breaks regulate the cleavage-independent release of Rec8-cohesin during yeast meiosis. Genes Cells 29(1):86-98 PMID:37968127
    • SGD Paper
    • DOI full text
    • PubMed
  • Joo JH, et al. (2024) RPA interacts with Rad52 to promote meiotic crossover and noncrossover recombination. Nucleic Acids Res 52(7):3794-3809 PMID:38340339
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mwaniki S, et al. (2024) Mutational analysis of Mei5, a subunit of Mei5-Sae3 complex, in Dmc1-mediated recombination during yeast meiosis. Genes Cells 29(8):650-666 PMID:38924305
    • SGD Paper
    • DOI full text
    • PubMed
  • Sampathkumar A, et al. (2024) Replication protein-A, RPA, plays a pivotal role in the maintenance of recombination checkpoint in yeast meiosis. Sci Rep 14(1):9550 PMID:38664461
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wei CD, et al. (2024) Mei5-Sae3 stabilizes Dmc1 nucleating clusters for efficient Dmc1 assembly on RPA-coated single-stranded DNA. Nucleic Acids Res 52(19):11768-11784 PMID:39275989
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gioia M, et al. (2023) Exo1 protects DNA nicks from ligation to promote crossover formation during meiosis. PLoS Biol 21(4):e3002085 PMID:37079643
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sawant P, et al. (2023) The role of conserved amino acid residues of Sae3 in Mei5-Sae3 complex for Dmc1 assembly in meiotic recombination. Genes Genet Syst 98(1):45-52 PMID:37225456
    • SGD Paper
    • DOI full text
    • PubMed
  • Shinohara M and Shinohara A (2023) The Msh5 complex shows homeostatic localization in response to DNA double-strand breaks in yeast meiosis. Front Cell Dev Biol 11:1170689 PMID:37274743
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lee MS, et al. (2021) The synaptonemal complex central region modulates crossover pathways and feedback control of meiotic double-strand break formation. Nucleic Acids Res 49(13):7537-7553 PMID:34197600
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Nandanan KG, et al. (2021) Regulation of Msh4-Msh5 association with meiotic chromosomes in budding yeast. Genetics 219(2) PMID:34849874
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Prasada Rao HB, et al. (2021) Phosphorylation of luminal region of the SUN-domain protein Mps3 promotes nuclear envelope localization during meiosis. Elife 10 PMID:34586062
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Takagi T, et al. (2021) Ultrastructural analysis in yeast reveals a meiosis-specific actin-containing nuclear bundle. Commun Biol 4(1):1009 PMID:34433891
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Usui T and Shinohara A (2021) Rad9, a 53BP1 Ortholog of Budding Yeast, Is Insensitive to Spo11-Induced Double-Strand Breaks During Meiosis. Front Cell Dev Biol 9:635383 PMID:33842461
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zhu Z, et al. (2021) SCFCdc4 ubiquitin ligase regulates synaptonemal complex formation during meiosis. Life Sci Alliance 4(2) PMID:33293336
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Woo TT, et al. (2020) Dual roles of yeast Rad51 N-terminal domain in repairing DNA double-strand breaks. Nucleic Acids Res 48(15):8474-8489 PMID:32652040
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zhang Y, et al. (2020) Genetic Interactions of Histone Modification Machinery Set1 and PAF1C with the Recombination Complex Rec114-Mer2-Mei4 in the Formation of Meiotic DNA Double-Strand Breaks. Int J Mol Sci 21(8) PMID:32290544
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bommi JR, et al. (2019) Meiosis-specific cohesin component, Rec8, promotes the localization of Mps3 SUN domain protein on the nuclear envelope. Genes Cells 24(1):94-106 PMID:30417519
    • SGD Paper
    • DOI full text
    • PubMed
  • Challa K, et al. (2019) Meiosis-specific prophase-like pathway controls cleavage-independent release of cohesin by Wapl phosphorylation. PLoS Genet 15(1):e1007851 PMID:30605471
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Challa K, et al. (2019) Meiotic prophase-like pathway for cleavage-independent removal of cohesin for chromosome morphogenesis. Curr Genet 65(4):817-827 PMID:30923890
    • SGD Paper
    • DOI full text
    • PubMed
  • Sasanuma H, et al. (2019) Srs2 helicase prevents the formation of toxic DNA damage during late prophase I of yeast meiosis. Chromosoma 128(3):453-471 PMID:31168653
    • SGD Paper
    • DOI full text
    • PubMed
  • Shinohara M, et al. (2019) Distinct Functions in Regulation of Meiotic Crossovers for DNA Damage Response Clamp Loader Rad24(Rad17) and Mec1(ATR) Kinase. Genetics 213(4):1255-1269 PMID:31597673
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Chakraborty P, et al. (2017) Modulating Crossover Frequency and Interference for Obligate Crossovers in Saccharomyces cerevisiae Meiosis. G3 (Bethesda) 7(5):1511-1524 PMID:28315832
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Challa K, et al. (2016) Rad61/Wpl1 (Wapl), a cohesin regulator, controls chromosome compaction during meiosis. Nucleic Acids Res 44(7):3190-203 PMID:26825462
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gothwal SK, et al. (2016) The Double-Strand Break Landscape of Meiotic Chromosomes Is Shaped by the Paf1 Transcription Elongation Complex in Saccharomyces cerevisiae. Genetics 202(2):497-512 PMID:26627841
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Subramanian VV, et al. (2016) Chromosome Synapsis Alleviates Mek1-Dependent Suppression of Meiotic DNA Repair. PLoS Biol 14(2):e1002369 PMID:26870961
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Shinohara M, et al. (2015) DNA damage response clamp 9-1-1 promotes assembly of ZMM proteins for formation of crossovers and synaptonemal complex. J Cell Sci 128(8):1494-506 PMID:25736290
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bani Ismail M, et al. (2014) Dot1-dependent histone H3K79 methylation promotes the formation of meiotic double-strand breaks in the absence of histone H3K4 methylation in budding yeast. PLoS One 9(5):e96648 PMID:24797370
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sasanuma H, et al. (2013) Remodeling of the Rad51 DNA strand-exchange protein by the Srs2 helicase. Genetics 194(4):859-72 PMID:23770697
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sasanuma H, et al. (2013) A new protein complex promoting the assembly of Rad51 filaments. Nat Commun 4:1676 PMID:23575680
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Shinohara M and Shinohara A (2013) Multiple pathways suppress non-allelic homologous recombination during meiosis in Saccharomyces cerevisiae. PLoS One 8(4):e63144 PMID:23646187
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rao HB, et al. (2011) Mps3 SUN domain is important for chromosome motion and juxtaposition of homologous chromosomes during meiosis. Genes Cells 16(11):1081-96 PMID:22017544
    • SGD Paper
    • DOI full text
    • PubMed
  • Nishant KT, et al. (2010) Genetic analysis of baker's yeast Msh4-Msh5 reveals a threshold crossover level for meiotic viability. PLoS Genet 6(8) PMID:20865162
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zhu Z, et al. (2010) Cyclin-dependent kinase promotes formation of the synaptonemal complex in yeast meiosis. Genes Cells 15(10):1036-50 PMID:20825495
    • SGD Paper
    • DOI full text
    • PubMed
  • Conrad MN, et al. (2008) Rapid telomere movement in meiotic prophase is promoted by NDJ1, MPS3, and CSM4 and is modulated by recombination. Cell 133(7):1175-87 PMID:18585352
    • SGD Paper
    • DOI full text
    • PubMed
  • Kosaka H, et al. (2008) Csm4-dependent telomere movement on nuclear envelope promotes meiotic recombination. PLoS Genet 4(9):e1000196 PMID:18818742
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lao JP, et al. (2008) Rad52 promotes postinvasion steps of meiotic double-strand-break repair. Mol Cell 29(4):517-24 PMID:18313389
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Matsuzaki K, et al. (2008) Forkhead-associated domain of yeast Xrs2, a homolog of human Nbs1, promotes nonhomologous end joining through interaction with a ligase IV partner protein, Lif1. Genetics 179(1):213-25 PMID:18458108
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Shinohara M, et al. (2008) Crossover assurance and crossover interference are distinctly regulated by the ZMM proteins during yeast meiosis. Nat Genet 40(3):299-309 PMID:18297071
    • SGD Paper
    • DOI full text
    • PubMed
  • Hayase A, et al. (2004) A protein complex containing Mei5 and Sae3 promotes the assembly of the meiosis-specific RecA homolog Dmc1. Cell 119(7):927-40 PMID:15620352
    • SGD Paper
    • DOI full text
    • PubMed
  • Miyazaki T, et al. (2004) In vivo assembly and disassembly of Rad51 and Rad52 complexes during double-strand break repair. EMBO J 23(4):939-49 PMID:14765116
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yamashita K, et al. (2004) Rad6-Bre1-mediated histone H2B ubiquitylation modulates the formation of double-strand breaks during meiosis. Proc Natl Acad Sci U S A 101(31):11380-5 PMID:15280549
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zierhut C, et al. (2004) Mnd1 is required for meiotic interhomolog repair. Curr Biol 14(9):752-62 PMID:15120066
    • SGD Paper
    • DOI full text
    • PubMed
  • Shinohara M, et al. (2003) Crossover interference in Saccharomyces cerevisiae requires a TID1/RDH54- and DMC1-dependent pathway. Genetics 163(4):1273-86 PMID:12702674
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Shinohara M, et al. (2003) The mitotic DNA damage checkpoint proteins Rad17 and Rad24 are required for repair of double-strand breaks during meiosis in yeast. Genetics 164(3):855-65 PMID:12871899
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tsukamoto M, et al. (2003) The N-terminal DNA-binding domain of Rad52 promotes RAD51-independent recombination in Saccharomyces cerevisiae. Genetics 165(4):1703-15 PMID:14704160
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hong EL, et al. (2001) Saccharomyces cerevisiae Dmc1 protein promotes renaturation of single-strand DNA (ssDNA) and assimilation of ssDNA into homologous super-coiled duplex DNA. J Biol Chem 276(45):41906-12 PMID:11551925
    • SGD Paper
    • DOI full text
    • PubMed
  • Kim JM, et al. (2001) Effect of ions and nucleotides on the interactions of yeast Rad51 protein with single-stranded oligonucleotides. J Biochem 129(3):469-75 PMID:11226888
    • SGD Paper
    • DOI full text
    • PubMed
  • Shinohara M, et al. (2000) Tid1/Rdh54 promotes colocalization of rad51 and dmc1 during meiotic recombination. Proc Natl Acad Sci U S A 97(20):10814-9 PMID:11005857
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Morrison C, et al. (1999) The essential functions of human Rad51 are independent of ATP hydrolysis. Mol Cell Biol 19(10):6891-7 PMID:10490626
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Shinohara A and Ogawa T (1999) Rad51/RecA protein families and the associated proteins in eukaryotes. Mutat Res 435(1):13-21 PMID:10526213
    • SGD Paper
    • DOI full text
    • PubMed
  • Gasior SL, et al. (1998) Rad52 associates with RPA and functions with rad55 and rad57 to assemble meiotic recombination complexes. Genes Dev 12(14):2208-21 PMID:9679065
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Katagiri T, et al. (1998) Multiple possible sites of BRCA2 interacting with DNA repair protein RAD51. Genes Chromosomes Cancer 21(3):217-22 PMID:9523196
    • SGD Paper
    • DOI full text
    • PubMed
  • Nishinaka T, et al. (1998) Base pair switching by interconversion of sugar puckers in DNA extended by proteins of RecA-family: a model for homology search in homologous genetic recombination. Proc Natl Acad Sci U S A 95(19):11071-6 PMID:9736691
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Shinohara A and Ogawa T (1998) Stimulation by Rad52 of yeast Rad51-mediated recombination. Nature 391(6665):404-7 PMID:9450759
    • SGD Paper
    • DOI full text
    • PubMed
  • Shinohara A, et al. (1998) Rad52 forms ring structures and co-operates with RPA in single-strand DNA annealing. Genes Cells 3(3):145-56 PMID:9619627
    • SGD Paper
    • DOI full text
    • PubMed
  • Sonoda E, et al. (1998) Rad51-deficient vertebrate cells accumulate chromosomal breaks prior to cell death. EMBO J 17(2):598-608 PMID:9430650
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yamaguchi-Iwai Y, et al. (1998) Homologous recombination, but not DNA repair, is reduced in vertebrate cells deficient in RAD52. Mol Cell Biol 18(11):6430-5 PMID:9774659
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mizuta R, et al. (1997) RAB22 and RAB163/mouse BRCA2: proteins that specifically interact with the RAD51 protein. Proc Natl Acad Sci U S A 94(13):6927-32 PMID:9192668
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Shinohara A, et al. (1997) Saccharomyces cerevisiae recA homologues RAD51 and DMC1 have both distinct and overlapping roles in meiotic recombination. Genes Cells 2(10):615-29 PMID:9427283
    • SGD Paper
    • DOI full text
    • PubMed
  • Shinohara M, et al. (1997) Characterization of the roles of the Saccharomyces cerevisiae RAD54 gene and a homologue of RAD54, RDH54/TID1, in mitosis and meiosis. Genetics 147(4):1545-56 PMID:9409820
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Maeshima K, et al. (1995) RAD51 homologues in Xenopus laevis: two distinct genes are highly expressed in ovary and testis. Gene 160(2):195-200 PMID:7642095
    • SGD Paper
    • DOI full text
    • PubMed
  • Ogawa T, et al. (1995) A species-specific interaction of rad51 and rad52 proteins in eukaryotes. Adv Biophys 31:93-100 PMID:7625281
    • SGD Paper
    • DOI full text
    • PubMed
  • Shinohara A, et al. (1995) [Structure and function of RAD51 gene in eukaryote]. Nihon Rinsho 53(1):239-49 PMID:7897850
    • SGD Paper
    • PubMed
  • Bezzubova O, et al. (1993) A chicken RAD51 homologue is expressed at high levels in lymphoid and reproductive organs. Nucleic Acids Res 21(7):1577-80 PMID:8479908
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ogawa T, et al. (1993) RecA-like recombination proteins in eukaryotes: functions and structures of RAD51 genes. Cold Spring Harb Symp Quant Biol 58:567-76 PMID:7956071
    • SGD Paper
    • DOI full text
    • PubMed
  • Ogawa T, et al. (1993) Similarity of the yeast RAD51 filament to the bacterial RecA filament. Science 259(5103):1896-9 PMID:8456314
    • SGD Paper
    • DOI full text
    • PubMed
  • Shinohara A, et al. (1993) Cloning of human, mouse and fission yeast recombination genes homologous to RAD51 and recA. Nat Genet 4(3):239-43 PMID:8358431
    • SGD Paper
    • DOI full text
    • PubMed
  • Shinohara A, et al. (1992) Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein. Cell 69(3):457-70 PMID:1581961
    • SGD Paper
    • DOI full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top