Chalivendra S, et al. (2024) Selected humanization of yeast U1 snRNP leads to global suppression of pre-mRNA splicing and mitochondrial dysfunction in the budding yeast. RNA 30(8):1070-1088 PMID:38688558
Dong G, et al. (2024) Metabolic engineering of Saccharomyces cerevisiae for de novo production of odd-numbered medium-chain fatty acids. Metab Eng 82:100-109 PMID:38325640
Hao H, et al. (2024) Extending the G1 phase improves the production of lipophilic compounds in yeast by boosting enzyme expression and increasing cell size. Proc Natl Acad Sci U S A 121(47):e2413486121 PMID:39536088
Qin N, et al. (2024) Increased CO2 fixation enables high carbon-yield production of 3-hydroxypropionic acid in yeast. Nat Commun 15(1):1591 PMID:38383540
Xu S, et al. (2024) CILF: CRISPR/Cas9 based integration of large DNA fragments in Saccharomyces cerevisiae. Biotechnol Bioeng 121(12):3906-3911 PMID:39154293
Dong G, et al. (2023)De Novo Biosynthesis of Free Vaccenic Acid with a Low Content of Oleic Acid in Saccharomyces cerevisiae. J Agric Food Chem 71(43):16204-16211 PMID:37856078
Qi N, et al. (2023) De novo bio-production of odd-chain fatty acids in Saccharomyces cerevisiae through a synthetic pathway via 3-hydroxypropionic acid. Biotechnol Bioeng 120(3):852-858 PMID:36464776
Qin N, et al. (2023) Flux regulation through glycolysis and respiration is balanced by inositol pyrophosphates in yeast. Cell 186(4):748-763.e15 PMID:36758548
Valle-Rodríguez JO, et al. (2023) Directed evolution of a wax ester synthase for production of fatty acid ethyl esters in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 107(9):2921-2932 PMID:36976306
Xu S, et al. (2023) Exploiting a heterologous construction of the 3-hydroxypropionic acid carbon fixation pathway with mesaconate as an indicator in Saccharomyces cerevisiae. Bioresour Bioprocess 10(1):33 PMID:38647598
Yue Q, et al. (2023) A polycistronic system for multiplexed and precalibrated expression of multigene pathways in fungi. Nat Commun 14(1):4267 PMID:37460548
Cai G, et al. (2022) Development and expansion of the CRISPR/Cas9 toolboxes for powerful genome engineering in yeast. Enzyme Microb Technol 159:110056 PMID:35561628
Ding W, et al. (2022) Metabolic engineering of threonine catabolism enables Saccharomyces cerevisiae to produce propionate under aerobic conditions. Biotechnol J 17(3):e2100579 PMID:35086163
Gong G, et al. (2021) GTR 2.0: gRNA-tRNA Array and Cas9-NG Based Genome Disruption and Single-Nucleotide Conversion in Saccharomyces cerevisiae. ACS Synth Biol 10(6):1328-1337 PMID:34015926
Sun Y, et al. (2021) Metabolic and Evolutionary Engineering of Diploid Yeast for the Production of First- and Second-Generation Ethanol. Front Bioeng Biotechnol 9:835928 PMID:35155419
Zhang Y and Shi S (2021) Transcription Factor-Based Biosensor for Dynamic Control in Yeast for Natural Product Synthesis. Front Bioeng Biotechnol 9:635265 PMID:33614618
Zhang Y, et al. (2021) The Studies in Constructing Yeast Cell Factories for the Production of Fatty Acid Alkyl Esters. Front Bioeng Biotechnol 9:799032 PMID:35087801
Ge Y, et al. (2020) Structural insights into telomere protection and homeostasis regulation by yeast CST complex. Nat Struct Mol Biol 27(8):752-762 PMID:32661422
Meng J, et al. (2020) CRISPR/Cas9 Systems for the Development of Saccharomyces cerevisiae Cell Factories. Front Bioeng Biotechnol 8:594347 PMID:33330425
Guo Q, et al. (2019) Arabidopsis TRM5 encodes a nuclear-localised bifunctional tRNA guanine and inosine-N1-methyltransferase that is important for growth. PLoS One 14(11):e0225064 PMID:31756231
Zhang Y, et al. (2019) A gRNA-tRNA array for CRISPR-Cas9 based rapid multiplexed genome editing in Saccharomyces cerevisiae. Nat Commun 10(1):1053 PMID:30837474
Shi S, et al. (2017) Discovery and engineering of a 1-butanol biosensor in Saccharomyces cerevisiae. Bioresour Technol 245(Pt B):1343-1351 PMID:28712783
Shi S, et al. (2016) Improved production of fatty acids by Saccharomyces cerevisiae through screening a cDNA library from the oleaginous yeast Yarrowia lipolytica. FEMS Yeast Res 16(1):fov108 PMID:26658002
Shi S, et al. (2016) A highly efficient single-step, markerless strategy for multi-copy chromosomal integration of large biochemical pathways in Saccharomyces cerevisiae. Metab Eng 33:19-27 PMID:26546089
de Jong BW, et al. (2015) Metabolic pathway engineering for fatty acid ethyl ester production in Saccharomyces cerevisiae using stable chromosomal integration. J Ind Microbiol Biotechnol 42(3):477-86 PMID:25422103
Shi S, et al. (2014) Improving production of malonyl coenzyme A-derived metabolites by abolishing Snf1-dependent regulation of Acc1. mBio 5(3):e01130-14 PMID:24803522
de Jong BW, et al. (2014) Improved production of fatty acid ethyl esters in Saccharomyces cerevisiae through up-regulation of the ethanol degradation pathway and expression of the heterologous phosphoketolase pathway. Microb Cell Fact 13(1):39 PMID:24618091
Shi S, et al. (2012) Functional expression and characterization of five wax ester synthases in Saccharomyces cerevisiae and their utility for biodiesel production. Biotechnol Biofuels 5:7 PMID:22364438
Shi S, et al. (2010) Identification of human gene products containing Pro-Pro-x-Tyr (PY) motifs that enhance glutathione and endocytotic marker uptake in yeast. Cell Physiol Biochem 25(2-3):293-306 PMID:20110690