Park S, et al. (2021) The secondary-structured DNA-binding activity of Dna2 endonuclease/helicase is critical to cell growth under replication stress. FEBS J 288(4):1224-1242 PMID:32638513
Duong PTM, et al. (2020) The interaction between ubiquitin and yeast polymerase η C terminus does not require the UBZ domain. FEBS Lett 594(11):1726-1737 PMID:32239506
Demin AA, et al. (2017) GSK-3β Homolog Rim11 and the Histone Deacetylase Complex Ume6-Sin3-Rpd3 Are Involved in Replication Stress Response Caused by Defects in Dna2. Genetics 206(2):829-842 PMID:28468907
Kwon B, et al. (2016) Physical and functional interactions between nucleosomes and Rad27, a critical component of DNA processing during DNA metabolism. FEBS J 283(23):4247-4262 PMID:27759916
Thu HP, et al. (2015) A physiological significance of the functional interaction between Mus81 and Rad27 in homologous recombination repair. Nucleic Acids Res 43(3):1684-99 PMID:25628354
Lee M, et al. (2014) Rad52/Rad59-dependent recombination as a means to rectify faulty Okazaki fragment processing. J Biol Chem 289(21):15064-79 PMID:24711454
Lee CH, et al. (2013) The N-terminal 45-kDa domain of Dna2 endonuclease/helicase targets the enzyme to secondary structure DNA. J Biol Chem 288(13):9468-81 PMID:23344960
Kang YH, et al. (2012) Biochemical studies of the Saccharomyces cerevisiae Mph1 helicase on junction-containing DNA structures. Nucleic Acids Res 40(5):2089-106 PMID:22090425
Kim SO, et al. (2012) Srs2 possesses a non-canonical PIP box in front of its SBM for precise recognition of SUMOylated PCNA. J Mol Cell Biol 4(4):258-61 PMID:22641647
Munashingha PR, et al. (2012) The trans-autostimulatory activity of Rad27 suppresses dna2 defects in Okazaki fragment processing. J Biol Chem 287(12):8675-87 PMID:22235122
Nguyen TA, et al. (2011) Analysis of subunit assembly and function of the Saccharomyces cerevisiae RNase H2 complex. FEBS J 278(24):4927-42 PMID:22004424
Lee CH, et al. (2010) Involvement of Vts1, a structure-specific RNA-binding protein, in Okazaki fragment processing in yeast. Nucleic Acids Res 38(5):1583-95 PMID:20007605
Chiolo I, et al. (2007) The human F-Box DNA helicase FBH1 faces Saccharomyces cerevisiae Srs2 and postreplication repair pathway roles. Mol Cell Biol 27(21):7439-50 PMID:17724085
Kim JH, et al. (2006) Isolation of human Dna2 endonuclease and characterization of its enzymatic properties. Nucleic Acids Res 34(6):1854-64 PMID:16595799
Kim DH, et al. (2005) Enzymatic properties of the Caenorhabditis elegans Dna2 endonuclease/helicase and a species-specific interaction between RPA and Dna2. Nucleic Acids Res 33(4):1372-83 PMID:15745997
Kim JH, et al. (2005) In vivo and in vitro studies of Mgs1 suggest a link between genome instability and Okazaki fragment processing. Nucleic Acids Res 33(19):6137-50 PMID:16251400
Bae KH, et al. (2003) Bimodal interaction between replication-protein A and Dna2 is critical for Dna2 function both in vivo and in vitro. Nucleic Acids Res 31(12):3006-15 PMID:12799426
Lee JK, et al. (2003) The Cdc23 (Mcm10) protein is required for the phosphorylation of minichromosome maintenance complex by the Dfp1-Hsk1 kinase. Proc Natl Acad Sci U S A 100(5):2334-9 PMID:12604790
Bae SH, et al. (2002) Coupling of DNA helicase and endonuclease activities of yeast Dna2 facilitates Okazaki fragment processing. J Biol Chem 277(29):26632-41 PMID:12004053
Tanaka H, et al. (2002) The fission yeast pfh1(+) gene encodes an essential 5' to 3' DNA helicase required for the completion of S-phase. Nucleic Acids Res 30(21):4728-39 PMID:12409464
Bae SH and Seo YS (2000) Characterization of the enzymatic properties of the yeast dna2 Helicase/endonuclease suggests a new model for Okazaki fragment processing. J Biol Chem 275(48):38022-31 PMID:10984490
Kang HY, et al. (2000) Genetic analyses of Schizosaccharomyces pombe dna2(+) reveal that dna2 plays an essential role in Okazaki fragment metabolism. Genetics 155(3):1055-67 PMID:10880469
Kim HD, et al. (1999) The sen1(+) gene of Schizosaccharomyces pombe, a homologue of budding yeast SEN1, encodes an RNA and DNA helicase. Biochemistry 38(44):14697-710 PMID:10545196
Bae SH, et al. (1998) Dna2 of Saccharomyces cerevisiae possesses a single-stranded DNA-specific endonuclease activity that is able to act on double-stranded DNA in the presence of ATP. J Biol Chem 273(41):26880-90 PMID:9756935