Jennrich J, et al. (2025) The formation of chaperone-rich GET bodies depends on the tetratricopeptide repeat region of Sgt2 and is reversed by NADH. J Cell Sci 138(6) PMID:39976550
McDowell MA, et al. (2020) Structural Basis of Tail-Anchored Membrane Protein Biogenesis by the GET Insertase Complex. Mol Cell 80(1):72-86.e7 PMID:32910895
Arakel EC, et al. (2019) Dissection of GTPase-activating proteins reveals functional asymmetry in the COPI coat of budding yeast. J Cell Sci 132(16) PMID:31331965
Vitali DG, et al. (2018) The GET pathway can increase the risk of mitochondrial outer membrane proteins to be mistargeted to the ER. J Cell Sci 131(10) PMID:29661846
Weill U, et al. (2018) Toolbox: Creating a systematic database of secretory pathway proteins uncovers new cargo for COPI. Traffic 19(5):370-379 PMID:29527758
Arakel EC, et al. (2016) δ-COP contains a helix C-terminal to its longin domain key to COPI dynamics and function. Proc Natl Acad Sci U S A 113(25):6916-21 PMID:27298352
Aviram N, et al. (2016) The SND proteins constitute an alternative targeting route to the endoplasmic reticulum. Nature 540(7631):134-138 PMID:27905431
Elbaz-Alon Y, et al. (2014) The yeast oligopeptide transporter Opt2 is localized to peroxisomes and affects glutathione redox homeostasis. FEMS Yeast Res 14(7):1055-67 PMID:25130273
Vilardi F, et al. (2014) WRB and CAML are necessary and sufficient to mediate tail-anchored protein targeting to the ER membrane. PLoS One 9(1):e85033 PMID:24392163
Voth W, et al. (2014) The protein targeting factor Get3 functions as ATP-independent chaperone under oxidative stress conditions. Mol Cell 56(1):116-27 PMID:25242142
Powis K, et al. (2013) Get3 is a holdase chaperone and moves to deposition sites for aggregated proteins when membrane targeting is blocked. J Cell Sci 126(Pt 2):473-83 PMID:23203805
Wolf W, et al. (2012) Yeast Ist2 recruits the endoplasmic reticulum to the plasma membrane and creates a ribosome-free membrane microcompartment. PLoS One 7(7):e39703 PMID:22808051
Simpson PJ, et al. (2010) Structures of Get3, Get4, and Get5 provide new models for TA membrane protein targeting. Structure 18(8):897-902 PMID:20696390
Jonikas MC, et al. (2009) Comprehensive characterization of genes required for protein folding in the endoplasmic reticulum. Science 323(5922):1693-7 PMID:19325107
Metz J, et al. (2006) The yeast Arr4p ATPase binds the chloride transporter Gef1p when copper is available in the cytosol. J Biol Chem 281(1):410-7 PMID:16260785
Michelsen K, et al. (2006) A multimeric membrane protein reveals 14-3-3 isoform specificity in forward transport in yeast. Traffic 7(7):903-16 PMID:16734667
Jüschke C, et al. (2005) SEC18/NSF-independent, protein-sorting pathway from the yeast cortical ER to the plasma membrane. J Cell Biol 169(4):613-22 PMID:15911878
Wächter A and Schwappach B (2005) The yeast CLC chloride channel is proteolytically processed by the furin-like protease Kex2p in the first extracellular loop. FEBS Lett 579(5):1149-53 PMID:15710404
Schwappach B, et al. (1998) Golgi localization and functionally important domains in the NH2 and COOH terminus of the yeast CLC putative chloride channel Gef1p. J Biol Chem 273(24):15110-8 PMID:9614122
Hechenberger M, et al. (1996) A family of putative chloride channels from Arabidopsis and functional complementation of a yeast strain with a CLC gene disruption. J Biol Chem 271(52):33632-8 PMID:8969232