AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Schwappach B
  • References

Author: Schwappach B


References 35 references


No citations for this author.

Download References (.nbib)

  • Jennrich J, et al. (2025) The formation of chaperone-rich GET bodies depends on the tetratricopeptide repeat region of Sgt2 and is reversed by NADH. J Cell Sci 138(6) PMID:39976550
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • McDowell MA, et al. (2023) The GET insertase exhibits conformational plasticity and induces membrane thinning. Nat Commun 14(1):7355 PMID:37963916
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Farkas Á, et al. (2022) Regulated targeting of the monotopic hairpin membrane protein Erg1 requires the GET pathway. J Cell Biol 221(6) PMID:35587358
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ulrich K, et al. (2022) From guide to guard-activation mechanism of the stress-sensing chaperone Get3. Mol Cell 82(17):3226-3238.e7 PMID:35839781
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gomkale R, et al. (2021) Mapping protein interactions in the active TOM-TIM23 supercomplex. Nat Commun 12(1):5715 PMID:34588454
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zhang Y, et al. (2021) Ribosome-bound Get4/5 facilitates the capture of tail-anchored proteins by Sgt2 in yeast. Nat Commun 12(1):782 PMID:33542241
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • McDowell MA, et al. (2020) Structural Basis of Tail-Anchored Membrane Protein Biogenesis by the GET Insertase Complex. Mol Cell 80(1):72-86.e7 PMID:32910895
    • SGD Paper
    • DOI full text
    • PubMed
  • Arakel EC, et al. (2019) Dissection of GTPase-activating proteins reveals functional asymmetry in the COPI coat of budding yeast. J Cell Sci 132(16) PMID:31331965
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Borgese N, et al. (2019) The Ways of Tails: the GET Pathway and more. Protein J 38(3):289-305 PMID:31203484
    • SGD Paper
    • DOI full text
    • PubMed
  • Farkas Á, et al. (2019) The natural history of Get3-like chaperones. Traffic 20(5):311-324 PMID:30972921
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Vitali DG, et al. (2018) The GET pathway can increase the risk of mitochondrial outer membrane proteins to be mistargeted to the ER. J Cell Sci 131(10) PMID:29661846
    • SGD Paper
    • DOI full text
    • PubMed
  • Weill U, et al. (2018) Toolbox: Creating a systematic database of secretory pathway proteins uncovers new cargo for COPI. Traffic 19(5):370-379 PMID:29527758
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Geva Y, et al. (2017) Two novel effectors of trafficking and maturation of the yeast plasma membrane H+ -ATPase. Traffic 18(10):672-682 PMID:28727280
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Arakel EC, et al. (2016) δ-COP contains a helix C-terminal to its longin domain key to COPI dynamics and function. Proc Natl Acad Sci U S A 113(25):6916-21 PMID:27298352
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Aviram N, et al. (2016) The SND proteins constitute an alternative targeting route to the endoplasmic reticulum. Nature 540(7631):134-138 PMID:27905431
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rivera-Monroy J, et al. (2016) Mice lacking WRB reveal differential biogenesis requirements of tail-anchored proteins in vivo. Sci Rep 6:39464 PMID:28000760
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Elbaz-Alon Y, et al. (2014) The yeast oligopeptide transporter Opt2 is localized to peroxisomes and affects glutathione redox homeostasis. FEMS Yeast Res 14(7):1055-67 PMID:25130273
    • SGD Paper
    • DOI full text
    • PubMed
  • Vilardi F, et al. (2014) WRB and CAML are necessary and sufficient to mediate tail-anchored protein targeting to the ER membrane. PLoS One 9(1):e85033 PMID:24392163
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Voth W, et al. (2014) The protein targeting factor Get3 functions as ATP-independent chaperone under oxidative stress conditions. Mol Cell 56(1):116-27 PMID:25242142
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Leznicki P, et al. (2013) The association of BAG6 with SGTA and tail-anchored proteins. PLoS One 8(3):e59590 PMID:23533635
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Powis K, et al. (2013) Get3 is a holdase chaperone and moves to deposition sites for aggregated proteins when membrane targeting is blocked. J Cell Sci 126(Pt 2):473-83 PMID:23203805
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wolf W, et al. (2012) Yeast Ist2 recruits the endoplasmic reticulum to the plasma membrane and creates a ribosome-free membrane microcompartment. PLoS One 7(7):e39703 PMID:22808051
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Braun NA, et al. (2010) The yeast CLC protein counteracts vesicular acidification during iron starvation. J Cell Sci 123(Pt 13):2342-50 PMID:20530571
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Leznicki P, et al. (2010) Bat3 promotes the membrane integration of tail-anchored proteins. J Cell Sci 123(Pt 13):2170-8 PMID:20516149
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Simpson PJ, et al. (2010) Structures of Get3, Get4, and Get5 provide new models for TA membrane protein targeting. Structure 18(8):897-902 PMID:20696390
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Jonikas MC, et al. (2009) Comprehensive characterization of genes required for protein folding in the endoplasmic reticulum. Science 323(5922):1693-7 PMID:19325107
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Schuldiner M, et al. (2008) The GET complex mediates insertion of tail-anchored proteins into the ER membrane. Cell 134(4):634-45 PMID:18724936
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Michelsen K, et al. (2007) Novel cargo-binding site in the beta and delta subunits of coatomer. J Cell Biol 179(2):209-17 PMID:17954604
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Metz J, et al. (2006) The yeast Arr4p ATPase binds the chloride transporter Gef1p when copper is available in the cytosol. J Biol Chem 281(1):410-7 PMID:16260785
    • SGD Paper
    • DOI full text
    • PubMed
  • Michelsen K, et al. (2006) A multimeric membrane protein reveals 14-3-3 isoform specificity in forward transport in yeast. Traffic 7(7):903-16 PMID:16734667
    • SGD Paper
    • DOI full text
    • PubMed
  • Mrowiec T and Schwappach B (2006) 14-3-3 proteins in membrane protein transport. Biol Chem 387(9):1227-36 PMID:16972791
    • SGD Paper
    • DOI full text
    • PubMed
  • Jüschke C, et al. (2005) SEC18/NSF-independent, protein-sorting pathway from the yeast cortical ER to the plasma membrane. J Cell Biol 169(4):613-22 PMID:15911878
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wächter A and Schwappach B (2005) The yeast CLC chloride channel is proteolytically processed by the furin-like protease Kex2p in the first extracellular loop. FEBS Lett 579(5):1149-53 PMID:15710404
    • SGD Paper
    • DOI full text
    • PubMed
  • Schwappach B, et al. (1998) Golgi localization and functionally important domains in the NH2 and COOH terminus of the yeast CLC putative chloride channel Gef1p. J Biol Chem 273(24):15110-8 PMID:9614122
    • SGD Paper
    • DOI full text
    • PubMed
  • Hechenberger M, et al. (1996) A family of putative chloride channels from Arabidopsis and functional complementation of a yeast strain with a CLC gene disruption. J Biol Chem 271(52):33632-8 PMID:8969232
    • SGD Paper
    • DOI full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top