Silva A, et al. (2013) Involvement of yeast HSP90 isoforms in response to stress and cell death induced by acetic acid. PLoS One 8(8):e71294 PMID:23967187
Paredes JA, et al. (2012) Low level genome mistranslations deregulate the transcriptome and translatome and generate proteotoxic stress in yeast. BMC Biol 10:55 PMID:22715922
Schuller D, et al. (2012) Genetic diversity and population structure of Saccharomyces cerevisiae strains isolated from different grape varieties and winemaking regions. PLoS One 7(2):e32507 PMID:22393409
Franco-Duarte R, et al. (2011) Genotyping of Saccharomyces cerevisiae strains by interdelta sequence typing using automated microfluidics. Electrophoresis 32(12):1447-55 PMID:21630290
Iglesias-Gato D, et al. (2011) Guanine nucleotide pool imbalance impairs multiple steps of protein synthesis and disrupts GCN4 translational control in Saccharomyces cerevisiae. Genetics 187(1):105-22 PMID:20980241
Mateos L, et al. (2006) Purine biosynthesis, riboflavin production, and trophic-phase span are controlled by a Myb-related transcription factor in the fungus Ashbya gossypii. Appl Environ Microbiol 72(7):5052-60 PMID:16820505
Pinheiro M, et al. (2006) Statistical, computational and visualization methodologies to unveil gene primary structure features. Methods Inf Med 45(2):163-8 PMID:16538282
Silva RM, et al. (2004) Yeast as a model organism for studying the evolution of non-standard genetic codes. Brief Funct Genomic Proteomic 3(1):35-46 PMID:15163358
Massey SE, et al. (2003) Comparative evolutionary genomics unveils the molecular mechanism of reassignment of the CTG codon in Candida spp. Genome Res 13(4):544-57 PMID:12670996
O'Sullivan JM, et al. (2001) The Candida albicans gene encoding the cytoplasmic leucyl-tRNA synthetase: implications for the evolution of CUG codon reassignment. Gene 275(1):133-40 PMID:11574161
O'Sullivan JM, et al. (2001) Seryl-tRNA synthetase is not responsible for the evolution of CUG codon reassignment in Candida albicans. Yeast 18(4):313-22 PMID:11223940
Santos MA, et al. (2000) Molecular characterization of FMN1, the structural gene for the monofunctional flavokinase of Saccharomyces cerevisiae. J Biol Chem 275(37):28618-24 PMID:10887197
Förster C, et al. (1999) Physiological consequence of disruption of the VMA1 gene in the riboflavin overproducer Ashbya gossypii. J Biol Chem 274(14):9442-8 PMID:10092625
Saiz JE, et al. (1999) Disruption of six unknown open reading frames from Saccharomyces cerevisiae reveals two genes involved in vacuolar morphogenesis and one gene required for sporulation. Yeast 15(2):155-64 PMID:10029994
García-Ramírez JJ, et al. (1995) The Saccharomyces cerevisiae RIB4 gene codes for 6,7-dimethyl-8-ribityllumazine synthase involved in riboflavin biosynthesis. Molecular characterization of the gene and purification of the encoded protein. J Biol Chem 270(40):23801-7 PMID:7559556
García-Cantalejo J, et al. (1994) The complete sequence of an 18,002 bp segment of Saccharomyces cerevisiae chromosome XI contains the HBS1, MRP-L20 and PRP16 genes, and six new open reading frames. Yeast 10(2):231-45 PMID:8203164
Santos MA, et al. (1988) Mapping of the rib5 gene in Saccharomyces cerevisiae using UV light as an enhancer of rad52-mediated chromosome loss. Curr Genet 14(5):419-23 PMID:3066507