AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Reese JC
  • References

Author: Reese JC


References 42 references


No citations for this author.

Download References (.nbib)

  • Pfannenstein J, et al. (2024) Characterization of BioID tagging systems in budding yeast and exploring the interactome of the Ccr4-Not complex. G3 (Bethesda) 14(11) PMID:39271111
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Akinniyi OT and Reese JC (2021) DEF1: Much more than an RNA polymerase degradation factor. DNA Repair (Amst) 107:103202 PMID:34419700
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Brooks Crickard J and Reese JC (2019) Biochemical methods to characterize RNA polymerase II elongation complexes. Methods 159-160:70-81 PMID:30684536
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Jiang H, et al. (2019) Ccr4-Not maintains genomic integrity by controlling the ubiquitylation and degradation of arrested RNAPII. Genes Dev 33(11-12):705-717 PMID:30948432
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Miller JE, et al. (2018) Genome-Wide Mapping of Decay Factor-mRNA Interactions in Yeast Identifies Nutrient-Responsive Transcripts as Targets of the Deadenylase Ccr4. G3 (Bethesda) 8(1):315-330 PMID:29158339
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Crickard JB, et al. (2016) Biochemical Analysis of Yeast Suppressor of Ty 4/5 (Spt4/5) Reveals the Importance of Nucleic Acid Interactions in the Prevention of RNA Polymerase II Arrest. J Biol Chem 291(19):9853-70 PMID:26945063
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Dutta A, et al. (2015) Ccr4-Not and TFIIS Function Cooperatively To Rescue Arrested RNA Polymerase II. Mol Cell Biol 35(11):1915-25 PMID:25776559
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Babbarwal V, et al. (2014) The Rpb4/7 module of RNA polymerase II is required for carbon catabolite repressor protein 4-negative on TATA (Ccr4-not) complex to promote elongation. J Biol Chem 289(48):33125-30 PMID:25315781
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zheng S, et al. (2014) A highly conserved region within H2B is important for FACT to act on nucleosomes. Mol Cell Biol 34(3):303-14 PMID:24248595
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Reese JC (2013) The control of elongation by the yeast Ccr4-not complex. Biochim Biophys Acta 1829(1):127-33 PMID:22975735
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Miller JE and Reese JC (2012) Ccr4-Not complex: the control freak of eukaryotic cells. Crit Rev Biochem Mol Biol 47(4):315-33 PMID:22416820
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kruk JA, et al. (2011) The multifunctional Ccr4-Not complex directly promotes transcription elongation. Genes Dev 25(6):581-93 PMID:21406554
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Krajewski WA and Reese JC (2010) SET domains of histone methyltransferases recognize ISWI-remodeled nucleosomal species. Mol Cell Biol 30(3):552-64 PMID:19752191
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zheng S, et al. (2010) Novel trans-tail regulation of H2B ubiquitylation and H3K4 methylation by the N terminus of histone H2A. Mol Cell Biol 30(14):3635-45 PMID:20498280
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Psathas JN, et al. (2009) Set2-dependent K36 methylation is regulated by novel intratail interactions within H3. Mol Cell Biol 29(24):6413-26 PMID:19822661
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tomar RS, et al. (2009) A novel mechanism of antagonism between ATP-dependent chromatin remodeling complexes regulates RNR3 expression. Mol Cell Biol 29(12):3255-65 PMID:19349301
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Reese JC, et al. (2008) Isolation of highly purified yeast nuclei for nuclease mapping of chromatin structure. Methods Mol Biol 463:43-53 PMID:18951159
    • SGD Paper
    • DOI full text
    • PubMed
  • Tomar RS, et al. (2008) Yeast Rap1 contributes to genomic integrity by activating DNA damage repair genes. EMBO J 27(11):1575-84 PMID:18480842
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zhang H, et al. (2008) Dissection of coactivator requirement at RNR3 reveals unexpected contributions from TFIID and SAGA. J Biol Chem 283(41):27360-27368 PMID:18682387
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sharma VM, et al. (2007) Histone deacetylases RPD3 and HOS2 regulate the transcriptional activation of DNA damage-inducible genes. Mol Cell Biol 27(8):3199-210 PMID:17296735
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zhang H and Reese JC (2007) Exposing the core promoter is sufficient to activate transcription and alter coactivator requirement at RNR3. Proc Natl Acad Sci U S A 104(21):8833-8 PMID:17502614
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zhang Z and Reese JC (2006) Isolation of yeast nuclei and micrococcal nuclease mapping of nucleosome positioning. Methods Mol Biol 313:245-55 PMID:16118438
    • SGD Paper
    • DOI full text
    • PubMed
  • Ercan S, et al. (2005) Yeast recombination enhancer is stimulated by transcription activation. Mol Cell Biol 25(18):7976-87 PMID:16135790
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zhang Z and Reese JC (2005) Molecular genetic analysis of the yeast repressor Rfx1/Crt1 reveals a novel two-step regulatory mechanism. Mol Cell Biol 25(17):7399-411 PMID:16107689
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bergkessel M and Reese JC (2004) An essential role for the Saccharomyces cerevisiae DEAD-box helicase DHH1 in G1/S DNA-damage checkpoint recovery. Genetics 167(1):21-33 PMID:15166134
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zhang Z and Reese JC (2004) Redundant mechanisms are used by Ssn6-Tup1 in repressing chromosomal gene transcription in Saccharomyces cerevisiae. J Biol Chem 279(38):39240-50 PMID:15254041
    • SGD Paper
    • DOI full text
    • PubMed
  • Zhang Z and Reese JC (2004) Ssn6-Tup1 requires the ISW2 complex to position nucleosomes in Saccharomyces cerevisiae. EMBO J 23(11):2246-57 PMID:15116071
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sharma VM, et al. (2003) SWI/SNF-dependent chromatin remodeling of RNR3 requires TAF(II)s and the general transcription machinery. Genes Dev 17(4):502-15 PMID:12600943
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kulesza CA, et al. (2002) Adenovirus E1A requires the yeast SAGA histone acetyltransferase complex and associates with SAGA components Gcn5 and Tra1. Oncogene 21(9):1411-22 PMID:11857084
    • SGD Paper
    • DOI full text
    • PubMed
  • Durso RJ, et al. (2001) Analysis of TAF90 mutants displaying allele-specific and broad defects in transcription. Mol Cell Biol 21(21):7331-44 PMID:11585915
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hassan AH, et al. (2001) Promoter targeting of chromatin-modifying complexes. Front Biosci 6:D1054-64 PMID:11532604
    • SGD Paper
    • DOI full text
    • PubMed
  • Li B and Reese JC (2001) Ssn6-Tup1 regulates RNR3 by positioning nucleosomes and affecting the chromatin structure at the upstream repression sequence. J Biol Chem 276(36):33788-97 PMID:11448965
    • SGD Paper
    • DOI full text
    • PubMed
  • Reese JC and Green MR (2001) Genetic analysis of TAF68/61 reveals links to cell cycle regulators. Yeast 18(13):1197-205 PMID:11561287
    • SGD Paper
    • DOI full text
    • PubMed
  • Stitzel ML, et al. (2001) The proteasome regulates the UV-induced activation of the AP-1-like transcription factor Gcn4. Genes Dev 15(2):128-33 PMID:11157770
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Li B and Reese JC (2000) Derepression of DNA damage-regulated genes requires yeast TAF(II)s. EMBO J 19(15):4091-100 PMID:10921889
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Reese JC, et al. (2000) Identification of a yeast transcription factor IID subunit, TSG2/TAF48. J Biol Chem 275(23):17391-8 PMID:10751405
    • SGD Paper
    • DOI full text
    • PubMed
  • Grant PA, et al. (1998) A subset of TAF(II)s are integral components of the SAGA complex required for nucleosome acetylation and transcriptional stimulation. Cell 94(1):45-53 PMID:9674426
    • SGD Paper
    • DOI full text
    • PubMed
  • Gadbois EL, et al. (1997) Functional antagonism between RNA polymerase II holoenzyme and global negative regulator NC2 in vivo. Proc Natl Acad Sci U S A 94(7):3145-50 PMID:9096360
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Walker SS, et al. (1997) Yeast TAF(II)145 required for transcription of G1/S cyclin genes and regulated by the cellular growth state. Cell 90(4):607-14 PMID:9288741
    • SGD Paper
    • DOI full text
    • PubMed
  • Apone LM, et al. (1996) Yeast TAF(II)90 is required for cell-cycle progression through G2/M but not for general transcription activation. Genes Dev 10(18):2368-80 PMID:8824595
    • SGD Paper
    • DOI full text
    • PubMed
  • Walker SS, et al. (1996) Transcription activation in cells lacking TAFIIS. Nature 383(6596):185-8 PMID:8774886
    • SGD Paper
    • DOI full text
    • PubMed
  • Reese JC, et al. (1994) Yeast TAFIIS in a multisubunit complex required for activated transcription. Nature 371(6497):523-7 PMID:7935765
    • SGD Paper
    • DOI full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top