AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Raué HA
  • References

Author: Raué HA


References 45 references


No citations for this author.

Download References (.nbib)

  • Cléry A, et al. (2007) Analysis of sequence and structural features that identify the B/C motif of U3 small nucleolar RNA as the recognition site for the Snu13p-Rrp9p protein pair. Mol Cell Biol 27(4):1191-206 PMID:17145781
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bax R, et al. (2006) Slx9p facilitates efficient ITS1 processing of pre-rRNA in Saccharomyces cerevisiae. RNA 12(11):2005-13 PMID:17018574
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bax R, et al. (2006) Saccharomyces cerevisiae Sof1p associates with 35S Pre-rRNA independent from U3 snoRNA and Rrp5p. Eukaryot Cell 5(3):427-34 PMID:16524898
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Faber AW, et al. (2006) 5'-end formation of yeast 5.8SL rRNA is an endonucleolytic event. Biochem Biophys Res Commun 345(2):796-802 PMID:16701559
    • SGD Paper
    • DOI full text
    • PubMed
  • de Boer P, et al. (2006) Rrp5p, a trans-acting factor in yeast ribosome biogenesis, is an RNA-binding protein with a pronounced preference for U-rich sequences. RNA 12(2):263-71 PMID:16428605
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Faber AW, et al. (2004) The RNA catabolic enzymes Rex4p, Rnt1p, and Dbr1p show genetic interaction with trans-acting factors involved in processing of ITS1 in Saccharomyces cerevisiae pre-rRNA. RNA 10(12):1946-56 PMID:15525710
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Vos HR, et al. (2004) U3 snoRNP and Rrp5p associate independently with Saccharomyces cerevisiae 35S pre-rRNA, but Rrp5p is essential for association of Rok1p. Nucleic Acids Res 32(19):5827-33 PMID:15523097
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Vos HR, et al. (2004) Deletion of the three distal S1 motifs of Saccharomyces cerevisiae Rrp5p abolishes pre-rRNA processing at site A(2) without reducing the production of functional 40S subunits. Eukaryot Cell 3(6):1504-12 PMID:15590824
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Geerlings TH, et al. (2003) Rio2p, an evolutionarily conserved, low abundant protein kinase essential for processing of 20 S Pre-rRNA in Saccharomyces cerevisiae. J Biol Chem 278(25):22537-45 PMID:12690111
    • SGD Paper
    • DOI full text
    • PubMed
  • Eppens NA, et al. (2002) Deletions in the S1 domain of Rrp5p cause processing at a novel site in ITS1 of yeast pre-rRNA that depends on Rex4p. Nucleic Acids Res 30(19):4222-31 PMID:12364601
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Faber AW, et al. (2002) Ngl2p is a Ccr4p-like RNA nuclease essential for the final step in 3'-end processing of 5.8S rRNA in Saccharomyces cerevisiae. RNA 8(9):1095-101 PMID:12358428
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • van Beekvelt CA, et al. (2001) All three functional domains of the large ribosomal subunit protein L25 are required for both early and late pre-rRNA processing steps in Saccharomyces cerevisiae. Nucleic Acids Res 29(24):5001-8 PMID:11812830
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • van Beekvelt CA, et al. (2001) Identification of cis-acting elements involved in 3'-end formation of Saccharomyces cerevisiae 18S rRNA. RNA 7(6):896-903 PMID:11421364
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Geerlings TH, et al. (2000) The final step in the formation of 25S rRNA in Saccharomyces cerevisiae is performed by 5'-->3' exonucleases. RNA 6(12):1698-703 PMID:11142370
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Venema J, et al. (2000) Yeast Rrp9p is an evolutionarily conserved U3 snoRNP protein essential for early pre-rRNA processing cleavages and requires box C for its association. RNA 6(11):1660-71 PMID:11105764
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • van Beekvelt CA, et al. (2000) Domain III of Saccharomyces cerevisiae 25 S ribosomal RNA: its role in binding of ribosomal protein L25 and 60 S subunit formation. J Mol Biol 296(1):7-17 PMID:10656814
    • SGD Paper
    • DOI full text
    • PubMed
  • Eppens NA, et al. (1999) The roles of Rrp5p in the synthesis of yeast 18S and 5.8S rRNA can be functionally and physically separated. RNA 5(6):779-93 PMID:10376877
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Timmers AC, et al. (1999) Nuclear and nucleolar localization of Saccharomyces cerevisiae ribosomal proteins S22 and S25. FEBS Lett 452(3):335-40 PMID:10386617
    • SGD Paper
    • DOI full text
    • PubMed
  • Jeeninga RE, et al. (1997) Variable regions V13 and V3 of Saccharomyces cerevisiae contain structural features essential for normal biogenesis and stability of 5.8S and 25S rRNA. RNA 3(5):476-88 PMID:9149229
    • SGD Paper
    • PMC full text
    • PubMed
  • Harmsen MM, et al. (1996) Overexpression of binding protein and disruption of the PMR1 gene synergistically stimulate secretion of bovine prochymosin but not plant thaumatin in yeast. Appl Microbiol Biotechnol 46(4):365-70 PMID:8987725
    • SGD Paper
    • DOI full text
    • PubMed
  • Jeeninga RE, et al. (1996) Rat RL23a ribosomal protein efficiently competes with its Saccharomyces cerevisiae L25 homologue for assembly into 60 S subunits. J Mol Biol 263(5):648-56 PMID:8947565
    • SGD Paper
    • DOI full text
    • PubMed
  • Venema J, et al. (1995) Development and application of an in vivo system to study yeast ribosomal RNA biogenesis and function. Yeast 11(2):145-56 PMID:7732724
    • SGD Paper
    • DOI full text
    • PubMed
  • van Nues RW, et al. (1995) Evolutionarily conserved structural elements are critical for processing of Internal Transcribed Spacer 2 from Saccharomyces cerevisiae precursor ribosomal RNA. J Mol Biol 250(1):24-36 PMID:7602595
    • SGD Paper
    • DOI full text
    • PubMed
  • Abraham PR, et al. (1994) Characterization of the Saccharomyces cerevisiae nuclear gene CYB3 encoding a cytochrome b polypeptide of respiratory complex II. Mol Gen Genet 242(6):708-16 PMID:8152421
    • SGD Paper
    • DOI full text
    • PubMed
  • Kooi EA, et al. (1994) Mutational analysis of the C-terminal region of Saccharomyces cerevisiae ribosomal protein L25 in vitro and in vivo demonstrates the presence of two distinct functional elements. J Mol Biol 240(3):243-55 PMID:8028007
    • SGD Paper
    • DOI full text
    • PubMed
  • Raué HA (1994) Metabolic stability of mRNA in yeast--a potential target for modulating productivity? Trends Biotechnol 12(11):444-9 PMID:7765543
    • SGD Paper
    • DOI full text
    • PubMed
  • van Nues RW, et al. (1994) Separate structural elements within internal transcribed spacer 1 of Saccharomyces cerevisiae precursor ribosomal RNA direct the formation of 17S and 26S rRNA. Nucleic Acids Res 22(6):912-9 PMID:8152921
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Galego L, et al. (1993) Known heat-shock proteins are not responsible for stress-induced rapid degradation of ribosomal protein mRNAs in yeast. Yeast 9(6):583-8 PMID:8346674
    • SGD Paper
    • DOI full text
    • PubMed
  • Harmsen MM, et al. (1993) Effect of a pmr 1 disruption and different signal sequences on the intracellular processing and secretion of Cyamopsis tetragonoloba alpha-galactosidase by Saccharomyces cerevisiae. Gene 125(2):115-23 PMID:8385051
    • SGD Paper
    • DOI full text
    • PubMed
  • Abraham PR, et al. (1992) Molecular cloning and physical analysis of an 8.2 kb segment of chromosome XI of Saccharomyces cerevisiae reveals five tightly linked genes. Yeast 8(3):227-38 PMID:1574929
    • SGD Paper
    • DOI full text
    • PubMed
  • Vreken P and Raué HA (1992) The rate-limiting step in yeast PGK1 mRNA degradation is an endonucleolytic cleavage in the 3'-terminal part of the coding region. Mol Cell Biol 12(7):2986-96 PMID:1320194
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • van der Aar PC, et al. (1992) Effects of phosphoglycerate kinase overproduction in Saccharomyces cerevisiae on the physiology and plasmid stability. Yeast 8(1):47-55 PMID:1580100
    • SGD Paper
    • DOI full text
    • PubMed
  • van der Sande CA, et al. (1992) Functional analysis of internal transcribed spacer 2 of Saccharomyces cerevisiae ribosomal DNA. J Mol Biol 223(4):899-910 PMID:1538404
    • SGD Paper
    • DOI full text
    • PubMed
  • Lopes TS, et al. (1991) Mechanism of high-copy-number integration of pMIRY-type vectors into the ribosomal DNA of Saccharomyces cerevisiae. Gene 105(1):83-90 PMID:1937009
    • SGD Paper
    • DOI full text
    • PubMed
  • Musters W, et al. (1991) The conserved GTPase center and variable region V9 from Saccharomyces cerevisiae 26S rRNA can be replaced by their equivalents from other prokaryotes or eukaryotes without detectable loss of ribosomal function. Proc Natl Acad Sci U S A 88(4):1469-73 PMID:1996347
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rutgers CA, et al. (1991) rRNA binding domain of yeast ribosomal protein L25. Identification of its borders and a key leucine residue. J Mol Biol 218(2):375-85 PMID:2010915
    • SGD Paper
    • DOI full text
    • PubMed
  • Schaap PJ, et al. (1991) Identification and functional analysis of the nuclear localization signals of ribosomal protein L25 from Saccharomyces cerevisiae. J Mol Biol 221(1):225-37 PMID:1920406
    • SGD Paper
    • DOI full text
    • PubMed
  • Vreken P, et al. (1991) Turnover rate of yeast PGK mRNA can be changed by specific alterations in its trailer structure. Biochimie 73(6):729-37 PMID:1764519
    • SGD Paper
    • DOI full text
    • PubMed
  • Rutgers CA, et al. (1990) In vivo and in vitro analysis of structure-function relationships in ribosomal protein L25 from Saccharomyces cerevisiae. Biochim Biophys Acta 1050(1-3):74-9 PMID:2207171
    • SGD Paper
    • DOI full text
    • PubMed
  • Raué HA, et al. (1989) Structural comparison of 26S rRNA-binding ribosomal protein L25 from two different yeast strains and the equivalent proteins from three eubacteria and two chloroplasts. J Mol Evol 28(5):418-26 PMID:2501503
    • SGD Paper
    • DOI full text
    • PubMed
  • van den Heuvel JJ, et al. (1989) Effect of deletions in the 5'-noncoding region on the translational efficiency of phosphoglycerate kinase mRNA in yeast. Gene 79(1):83-95 PMID:2673936
    • SGD Paper
    • DOI full text
    • PubMed
  • el-Baradi TT, et al. (1987) Interaction of ribosomal proteins L25 from yeast and EL23 from E. coli with yeast 26S and mouse 28S rRNA. Biochimie 69(9):939-48 PMID:3126831
    • SGD Paper
    • DOI full text
    • PubMed
  • el-Baradi TT, et al. (1987) Ribosomal proteins EL11 from Escherichia coli and L15 from Saccharomyces cerevisiae bind to the same site in both yeast 26 S and mouse 28 S rRNA. J Mol Biol 195(4):909-17 PMID:3309345
    • SGD Paper
    • DOI full text
    • PubMed
  • elBaradi TT, et al. (1986) The cellular level of yeast ribosomal protein L25 is controlled principally by rapid degradation of excess protein. Curr Genet 10(10):733-9 PMID:3329033
    • SGD Paper
    • DOI full text
    • PubMed
  • el-Baradi TT, et al. (1985) Yeast ribosomal protein L25 binds to an evolutionary conserved site on yeast 26S and E. coli 23S rRNA. EMBO J 4(8):2101-7 PMID:3905389
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top