Cléry A, et al. (2007) Analysis of sequence and structural features that identify the B/C motif of U3 small nucleolar RNA as the recognition site for the Snu13p-Rrp9p protein pair. Mol Cell Biol 27(4):1191-206 PMID:17145781
de Boer P, et al. (2006) Rrp5p, a trans-acting factor in yeast ribosome biogenesis, is an RNA-binding protein with a pronounced preference for U-rich sequences. RNA 12(2):263-71 PMID:16428605
Faber AW, et al. (2004) The RNA catabolic enzymes Rex4p, Rnt1p, and Dbr1p show genetic interaction with trans-acting factors involved in processing of ITS1 in Saccharomyces cerevisiae pre-rRNA. RNA 10(12):1946-56 PMID:15525710
Vos HR, et al. (2004) U3 snoRNP and Rrp5p associate independently with Saccharomyces cerevisiae 35S pre-rRNA, but Rrp5p is essential for association of Rok1p. Nucleic Acids Res 32(19):5827-33 PMID:15523097
Vos HR, et al. (2004) Deletion of the three distal S1 motifs of Saccharomyces cerevisiae Rrp5p abolishes pre-rRNA processing at site A(2) without reducing the production of functional 40S subunits. Eukaryot Cell 3(6):1504-12 PMID:15590824
Geerlings TH, et al. (2003) Rio2p, an evolutionarily conserved, low abundant protein kinase essential for processing of 20 S Pre-rRNA in Saccharomyces cerevisiae. J Biol Chem 278(25):22537-45 PMID:12690111
Eppens NA, et al. (2002) Deletions in the S1 domain of Rrp5p cause processing at a novel site in ITS1 of yeast pre-rRNA that depends on Rex4p. Nucleic Acids Res 30(19):4222-31 PMID:12364601
Faber AW, et al. (2002) Ngl2p is a Ccr4p-like RNA nuclease essential for the final step in 3'-end processing of 5.8S rRNA in Saccharomyces cerevisiae. RNA 8(9):1095-101 PMID:12358428
van Beekvelt CA, et al. (2001) All three functional domains of the large ribosomal subunit protein L25 are required for both early and late pre-rRNA processing steps in Saccharomyces cerevisiae. Nucleic Acids Res 29(24):5001-8 PMID:11812830
van Beekvelt CA, et al. (2001) Identification of cis-acting elements involved in 3'-end formation of Saccharomyces cerevisiae 18S rRNA. RNA 7(6):896-903 PMID:11421364
Geerlings TH, et al. (2000) The final step in the formation of 25S rRNA in Saccharomyces cerevisiae is performed by 5'-->3' exonucleases. RNA 6(12):1698-703 PMID:11142370
Venema J, et al. (2000) Yeast Rrp9p is an evolutionarily conserved U3 snoRNP protein essential for early pre-rRNA processing cleavages and requires box C for its association. RNA 6(11):1660-71 PMID:11105764
van Beekvelt CA, et al. (2000) Domain III of Saccharomyces cerevisiae 25 S ribosomal RNA: its role in binding of ribosomal protein L25 and 60 S subunit formation. J Mol Biol 296(1):7-17 PMID:10656814
Eppens NA, et al. (1999) The roles of Rrp5p in the synthesis of yeast 18S and 5.8S rRNA can be functionally and physically separated. RNA 5(6):779-93 PMID:10376877
Timmers AC, et al. (1999) Nuclear and nucleolar localization of Saccharomyces cerevisiae ribosomal proteins S22 and S25. FEBS Lett 452(3):335-40 PMID:10386617
Jeeninga RE, et al. (1997) Variable regions V13 and V3 of Saccharomyces cerevisiae contain structural features essential for normal biogenesis and stability of 5.8S and 25S rRNA. RNA 3(5):476-88 PMID:9149229
Harmsen MM, et al. (1996) Overexpression of binding protein and disruption of the PMR1 gene synergistically stimulate secretion of bovine prochymosin but not plant thaumatin in yeast. Appl Microbiol Biotechnol 46(4):365-70 PMID:8987725
Jeeninga RE, et al. (1996) Rat RL23a ribosomal protein efficiently competes with its Saccharomyces cerevisiae L25 homologue for assembly into 60 S subunits. J Mol Biol 263(5):648-56 PMID:8947565
Venema J, et al. (1995) Development and application of an in vivo system to study yeast ribosomal RNA biogenesis and function. Yeast 11(2):145-56 PMID:7732724
van Nues RW, et al. (1995) Evolutionarily conserved structural elements are critical for processing of Internal Transcribed Spacer 2 from Saccharomyces cerevisiae precursor ribosomal RNA. J Mol Biol 250(1):24-36 PMID:7602595
Abraham PR, et al. (1994) Characterization of the Saccharomyces cerevisiae nuclear gene CYB3 encoding a cytochrome b polypeptide of respiratory complex II. Mol Gen Genet 242(6):708-16 PMID:8152421
Kooi EA, et al. (1994) Mutational analysis of the C-terminal region of Saccharomyces cerevisiae ribosomal protein L25 in vitro and in vivo demonstrates the presence of two distinct functional elements. J Mol Biol 240(3):243-55 PMID:8028007
van Nues RW, et al. (1994) Separate structural elements within internal transcribed spacer 1 of Saccharomyces cerevisiae precursor ribosomal RNA direct the formation of 17S and 26S rRNA. Nucleic Acids Res 22(6):912-9 PMID:8152921
Galego L, et al. (1993) Known heat-shock proteins are not responsible for stress-induced rapid degradation of ribosomal protein mRNAs in yeast. Yeast 9(6):583-8 PMID:8346674
Harmsen MM, et al. (1993) Effect of a pmr 1 disruption and different signal sequences on the intracellular processing and secretion of Cyamopsis tetragonoloba alpha-galactosidase by Saccharomyces cerevisiae. Gene 125(2):115-23 PMID:8385051
Abraham PR, et al. (1992) Molecular cloning and physical analysis of an 8.2 kb segment of chromosome XI of Saccharomyces cerevisiae reveals five tightly linked genes. Yeast 8(3):227-38 PMID:1574929
Vreken P and Raué HA (1992) The rate-limiting step in yeast PGK1 mRNA degradation is an endonucleolytic cleavage in the 3'-terminal part of the coding region. Mol Cell Biol 12(7):2986-96 PMID:1320194
van der Aar PC, et al. (1992) Effects of phosphoglycerate kinase overproduction in Saccharomyces cerevisiae on the physiology and plasmid stability. Yeast 8(1):47-55 PMID:1580100
van der Sande CA, et al. (1992) Functional analysis of internal transcribed spacer 2 of Saccharomyces cerevisiae ribosomal DNA. J Mol Biol 223(4):899-910 PMID:1538404
Lopes TS, et al. (1991) Mechanism of high-copy-number integration of pMIRY-type vectors into the ribosomal DNA of Saccharomyces cerevisiae. Gene 105(1):83-90 PMID:1937009
Musters W, et al. (1991) The conserved GTPase center and variable region V9 from Saccharomyces cerevisiae 26S rRNA can be replaced by their equivalents from other prokaryotes or eukaryotes without detectable loss of ribosomal function. Proc Natl Acad Sci U S A 88(4):1469-73 PMID:1996347
Rutgers CA, et al. (1991) rRNA binding domain of yeast ribosomal protein L25. Identification of its borders and a key leucine residue. J Mol Biol 218(2):375-85 PMID:2010915
Schaap PJ, et al. (1991) Identification and functional analysis of the nuclear localization signals of ribosomal protein L25 from Saccharomyces cerevisiae. J Mol Biol 221(1):225-37 PMID:1920406
Vreken P, et al. (1991) Turnover rate of yeast PGK mRNA can be changed by specific alterations in its trailer structure. Biochimie 73(6):729-37 PMID:1764519
Rutgers CA, et al. (1990) In vivo and in vitro analysis of structure-function relationships in ribosomal protein L25 from Saccharomyces cerevisiae. Biochim Biophys Acta 1050(1-3):74-9 PMID:2207171
Raué HA, et al. (1989) Structural comparison of 26S rRNA-binding ribosomal protein L25 from two different yeast strains and the equivalent proteins from three eubacteria and two chloroplasts. J Mol Evol 28(5):418-26 PMID:2501503
van den Heuvel JJ, et al. (1989) Effect of deletions in the 5'-noncoding region on the translational efficiency of phosphoglycerate kinase mRNA in yeast. Gene 79(1):83-95 PMID:2673936
el-Baradi TT, et al. (1987) Interaction of ribosomal proteins L25 from yeast and EL23 from E. coli with yeast 26S and mouse 28S rRNA. Biochimie 69(9):939-48 PMID:3126831
el-Baradi TT, et al. (1987) Ribosomal proteins EL11 from Escherichia coli and L15 from Saccharomyces cerevisiae bind to the same site in both yeast 26 S and mouse 28 S rRNA. J Mol Biol 195(4):909-17 PMID:3309345
elBaradi TT, et al. (1986) The cellular level of yeast ribosomal protein L25 is controlled principally by rapid degradation of excess protein. Curr Genet 10(10):733-9 PMID:3329033
el-Baradi TT, et al. (1985) Yeast ribosomal protein L25 binds to an evolutionary conserved site on yeast 26S and E. coli 23S rRNA. EMBO J 4(8):2101-7 PMID:3905389