Reference: Jeeninga RE, et al. (1996) Rat RL23a ribosomal protein efficiently competes with its Saccharomyces cerevisiae L25 homologue for assembly into 60 S subunits. J Mol Biol 263(5):648-56

Reference Help

Abstract


The large subunit protein RL23a from rat liver ribosomes shows 62% sequence identity with the primary rRNA-binding ribosomal protein L25 from Saccharomyces cerevisiae. In vitro binding studies indicated that both r-proteins are able to recognise the L25 binding site on yeast 25 S rRNA and its structural homologue on mammalian 28 S rRNA with equal efficiency. To determine whether the two r-proteins are also functionally equivalent in vivo, a single plasmid-borne copy of either the wild-type L25 gene or the RL23a cDNA, driven by the L25 promoter, was introduced into a yeast strain in which the chromosomal L25 gene is under control of the glucose-repressible GALI-10 promoter. No difference in growth rate could be detected between the two types of transformants when cultured on glucose-based medium. In cells that co-express epitope-tagged versions of L25 and RL23a from single-copy genes, approximately 35% of the 60 S subunits contained the heterologous protein as determined by Western analysis. This value could be increased to 55% by overexpressing RL23a using a multi-copy plasmid. These data demonstrate that rat RL23a can act as a highly efficient substitute for its yeast counterpart in the assembly of functional yeast ribosomes even in the presence of the endogenous L25 protein.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Jeeninga RE, Venema J, Raué HA
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference