AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Piatti S
  • References

Author: Piatti S


References 51 references


No citations for this author.

Download References (.nbib)

  • El Alaoui F, et al. (2025) Septin assemblies promote the lipid organization of membranes. Structure 33(3):451-464.e5 PMID:39892381
    • SGD Paper
    • DOI full text
    • PubMed
  • Varela Salgado M and Piatti S (2024) Septin Organization and Dynamics for Budding Yeast Cytokinesis. J Fungi (Basel) 10(9) PMID:39330402
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Varela Salgado M, et al. (2024) Phosphorylation of the F-BAR protein Hof1 drives septin ring splitting in budding yeast. Nat Commun 15(1):3383 PMID:38649354
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ibanes S, et al. (2022) The Syp1/FCHo2 protein induces septin filament bundling through its intrinsically disordered domain. Cell Rep 41(10):111765 PMID:36476870
    • SGD Paper
    • DOI full text
    • PubMed
  • Devault A and Piatti S (2021) Downregulation of the Tem1 GTPase by Amn1 after cytokinesis involves both nuclear import and SCF-mediated degradation. J Cell Sci 134(19) PMID:34518877
    • SGD Paper
    • DOI full text
    • PubMed
  • Benzi G and Piatti S (2020) Killing two birds with one stone: how budding yeast Mps1 controls chromosome segregation and spindle assembly checkpoint through phosphorylation of a single kinetochore protein. Curr Genet 66(6):1037-1044 PMID:32632756
    • SGD Paper
    • DOI full text
    • PubMed
  • Benzi G, et al. (2020) A common molecular mechanism underlies the role of Mps1 in chromosome biorientation and the spindle assembly checkpoint. EMBO Rep 21(6):e50257 PMID:32307893
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Piatti S (2020) Cytokinesis: An Anillin-RhoGEF Module Sets the Stage for Septin Double Ring Assembly. Curr Biol 30(8):R347-R349 PMID:32315632
    • SGD Paper
    • DOI full text
    • PubMed
  • Ruggiero A, et al. (2020) The Phosphatase PP1 Promotes Mitotic Slippage through Mad3 Dephosphorylation. Curr Biol 30(2):335-343.e5 PMID:31928870
    • SGD Paper
    • DOI full text
    • PubMed
  • Tamborrini D and Piatti S (2019) Septin clearance from the division site triggers cytokinesis in budding yeast. Microb Cell 6(6):295-298 PMID:31172014
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tamborrini D, et al. (2018) Recruitment of the mitotic exit network to yeast centrosomes couples septin displacement to actomyosin constriction. Nat Commun 9(1):4308 PMID:30333493
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Juanes MA and Piatti S (2016) Control of Formin Distribution and Actin Cable Assembly by the E3 Ubiquitin Ligases Dma1 and Dma2. Genetics 204(1):205-20 PMID:27449057
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Juanes MA and Piatti S (2016) The final cut: cell polarity meets cytokinesis at the bud neck in S. cerevisiae. Cell Mol Life Sci 73(16):3115-36 PMID:27085703
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Merlini L, et al. (2015) Rho1- and Pkc1-dependent phosphorylation of the F-BAR protein Syp1 contributes to septin ring assembly. Mol Biol Cell 26(18):3245-62 PMID:26179915
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Scarfone I and Piatti S (2015) Coupling spindle position with mitotic exit in budding yeast: The multifaceted role of the small GTPase Tem1. Small GTPases 6(4):196-201 PMID:26507466
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Scarfone I, et al. (2015) Asymmetry of the budding yeast Tem1 GTPase at spindle poles is required for spindle positioning but not for mitotic exit. PLoS Genet 11(2):e1004938 PMID:25658911
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Juanes MA, et al. (2013) Budding yeast greatwall and endosulfines control activity and spatial regulation of PP2A(Cdc55) for timely mitotic progression. PLoS Genet 9(7):e1003575 PMID:23861665
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Panigada D, et al. (2013) Yeast haspin kinase regulates polarity cues necessary for mitotic spindle positioning and is required to tolerate mitotic arrest. Dev Cell 26(5):483-95 PMID:23973165
    • SGD Paper
    • DOI full text
    • PubMed
  • Mariani L, et al. (2012) Role of the Mad2 dimerization interface in the spindle assembly checkpoint independent of kinetochores. Curr Biol 22(20):1900-8 PMID:23000150
    • SGD Paper
    • DOI full text
    • PubMed
  • Merlini L, et al. (2012) Budding yeast dma proteins control septin dynamics and the spindle position checkpoint by promoting the recruitment of the Elm1 kinase to the bud neck. PLoS Genet 8(4):e1002670 PMID:22570619
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Esposito M, et al. (2011) Analysis of the rpn11-m1 proteasomal mutant reveals connection between cell cycle and mitochondrial biogenesis. FEMS Yeast Res 11(1):60-71 PMID:21059189
    • SGD Paper
    • DOI full text
    • PubMed
  • Merlini L and Piatti S (2011) The mother-bud neck as a signaling platform for the coordination between spindle position and cytokinesis in budding yeast. Biol Chem 392(8-9):805-12 PMID:21824008
    • SGD Paper
    • DOI full text
    • PubMed
  • Rossio V, et al. (2010) Adapt or die: how eukaryotic cells respond to prolonged activation of the spindle assembly checkpoint. Biochem Soc Trans 38(6):1645-9 PMID:21118141
    • SGD Paper
    • DOI full text
    • PubMed
  • Rossio V, et al. (2010) The RSC chromatin-remodeling complex influences mitotic exit and adaptation to the spindle assembly checkpoint by controlling the Cdc14 phosphatase. J Cell Biol 191(5):981-97 PMID:21098112
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Chiroli E, et al. (2009) Cdc14 inhibition by the spindle assembly checkpoint prevents unscheduled centrosome separation in budding yeast. Mol Biol Cell 20(10):2626-37 PMID:19339280
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Fraschini R, et al. (2008) The spindle position checkpoint: how to deal with spindle misalignment during asymmetric cell division in budding yeast. Biochem Soc Trans 36(Pt 3):416-20 PMID:18481971
    • SGD Paper
    • DOI full text
    • PubMed
  • Chiroli E, et al. (2007) The budding yeast PP2ACdc55 protein phosphatase prevents the onset of anaphase in response to morphogenetic defects. J Cell Biol 177(4):599-611 PMID:17502422
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Citterio S, et al. (2006) Alfalfa Mob1-like proteins are involved in cell proliferation and are localized in the cell division plane during cytokinesis. Exp Cell Res 312(7):1050-64 PMID:16460730
    • SGD Paper
    • DOI full text
    • PubMed
  • Fraschini R, et al. (2006) Disappearance of the budding yeast Bub2-Bfa1 complex from the mother-bound spindle pole contributes to mitotic exit. J Cell Biol 172(3):335-46 PMID:16449187
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lottersberger F, et al. (2006) The Saccharomyces cerevisiae 14-3-3 proteins are required for the G1/S transition, actin cytoskeleton organization and cell wall integrity. Genetics 173(2):661-75 PMID:16648583
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mapelli M, et al. (2006) Determinants of conformational dimerization of Mad2 and its inhibition by p31comet. EMBO J 25(6):1273-84 PMID:16525508
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Nezi L, et al. (2006) Accumulation of Mad2-Cdc20 complex during spindle checkpoint activation requires binding of open and closed conformers of Mad2 in Saccharomyces cerevisiae. J Cell Biol 174(1):39-51 PMID:16818718
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Piatti S, et al. (2006) The spindle position checkpoint in budding yeast: the motherly care of MEN. Cell Div 1(1):2 PMID:16759408
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rancati G, et al. (2005) Mad3/BubR1 phosphorylation during spindle checkpoint activation depends on both Polo and Aurora kinases in budding yeast. Cell Cycle 4(7):972-80 PMID:15970700
    • SGD Paper
    • DOI full text
    • PubMed
  • Volta V, et al. (2005) Sen34p depletion blocks tRNA splicing in vivo and delays rRNA processing. Biochem Biophys Res Commun 337(1):89-94 PMID:16188229
    • SGD Paper
    • DOI full text
    • PubMed
  • Fraschini R, et al. (2004) Functional characterization of Dma1 and Dma2, the budding yeast homologues of Schizosaccharomyces pombe Dma1 and human Chfr. Mol Biol Cell 15(8):3796-810 PMID:15146058
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Chiroli E, et al. (2003) Budding yeast PAK kinases regulate mitotic exit by two different mechanisms. J Cell Biol 160(6):857-74 PMID:12642613
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Fraschini R, et al. (2001) Bub3 interaction with Mad2, Mad3 and Cdc20 is mediated by WD40 repeats and does not require intact kinetochores. EMBO J 20(23):6648-59 PMID:11726501
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Fraschini R, et al. (2001) Role of the kinetochore protein Ndc10 in mitotic checkpoint activation in Saccharomyces cerevisiae. Mol Genet Genomics 266(1):115-25 PMID:11589568
    • SGD Paper
    • DOI full text
    • PubMed
  • Severin F, et al. (2001) Correct spindle elongation at the metaphase/anaphase transition is an APC-dependent event in budding yeast. J Cell Biol 155(5):711-8 PMID:11724813
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Fraschini R, et al. (1999) Budding yeast Bub2 is localized at spindle pole bodies and activates the mitotic checkpoint via a different pathway from Mad2. J Cell Biol 145(5):979-91 PMID:10352016
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sanvito F, et al. (1999) The beta4 integrin interactor p27(BBP/eIF6) is an essential nuclear matrix protein involved in 60S ribosomal subunit assembly. J Cell Biol 144(5):823-37 PMID:10085284
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Piatti S (1997) Cell cycle regulation of S phase entry in Saccharomyces cerevisiae. Prog Cell Cycle Res 3:143-56 PMID:9552413
    • SGD Paper
    • DOI full text
    • PubMed
  • Pichler S, et al. (1997) Is the yeast anaphase promoting complex needed to prevent re-replication during G2 and M phases? EMBO J 16(19):5988-97 PMID:9312056
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cocker JH, et al. (1996) An essential role for the Cdc6 protein in forming the pre-replicative complexes of budding yeast. Nature 379(6561):180-2 PMID:8538771
    • SGD Paper
    • DOI full text
    • PubMed
  • Piatti S, et al. (1996) Activation of S-phase-promoting CDKs in late G1 defines a "point of no return" after which Cdc6 synthesis cannot promote DNA replication in yeast. Genes Dev 10(12):1516-31 PMID:8666235
    • SGD Paper
    • DOI full text
    • PubMed
  • Irniger S, et al. (1995) Genes involved in sister chromatid separation are needed for B-type cyclin proteolysis in budding yeast. Cell 81(2):269-78 PMID:7736579
    • SGD Paper
    • DOI full text
    • PubMed
  • Piatti S, et al. (1995) Cdc6 is an unstable protein whose de novo synthesis in G1 is important for the onset of S phase and for preventing a 'reductional' anaphase in the budding yeast Saccharomyces cerevisiae. EMBO J 14(15):3788-99 PMID:7641697
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Piatti S, et al. (1992) Control of DNA synthesis genes in budding yeast: involvement of the transcriptional modulator MOT1 in the expression of the DNA polymerase alpha gene. Chromosoma 102(1 Suppl):S107-13 PMID:1291231
    • SGD Paper
    • DOI full text
    • PubMed
  • Pizzagalli A, et al. (1992) Positive cis-acting regulatory sequences mediate proper control of POL1 transcription in Saccharomyces cerevisiae. Curr Genet 21(3):183-9 PMID:1563043
    • SGD Paper
    • DOI full text
    • PubMed
  • Plevani P, et al. (1988) The yeast DNA polymerase-primase complex: genes and proteins. Biochim Biophys Acta 951(2-3):268-73 PMID:3061469
    • SGD Paper
    • DOI full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top