AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Peng B
  • References

Author: Peng B


References 30 references


No citations for this author.

Download References (.nbib)

  • Yang C, et al. (2025) Mechanism of patulin biodegradation by a reductase from Saccharomyces cerevisiae and its potential application to apple juice. Food Res Int 206:116066 PMID:40058920
    • SGD Paper
    • DOI full text
    • PubMed
  • Yang C, et al. (2025) Identification and characterization of aldo-keto reductase responsible for patulin degradation in Saccharomyces cerevisiae. Food Chem 478:143706 PMID:40147281
    • SGD Paper
    • DOI full text
    • PubMed
  • Yang C, et al. (2025) Effects of Patulin Stress on the Physiology, Fermentation Performance, and Aroma Profile of Saccharomyces cerevisiae During Fermentation. J Food Sci 90(5):e70248 PMID:40331780
    • SGD Paper
    • DOI full text
    • PubMed
  • Lu Z, et al. (2024) LowTempGAL: a highly responsive low temperature-inducible GAL system in Saccharomyces cerevisiae. Nucleic Acids Res 52(12):7367-7383 PMID:38808673
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • McDonnell L, et al. (2024) Cyanamide-inducible expression of homing nuclease I- SceI for selectable marker removal and promoter characterisation in Saccharomyces cerevisiae. Synth Syst Biotechnol 9(4):820-827 PMID:39072146
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Peng B, et al. (2024) Integration of Yeast Episomal/Integrative Plasmid Causes Genotypic and Phenotypic Diversity and Improved Sesquiterpene Production in Metabolically Engineered Saccharomyces cerevisiae. ACS Synth Biol 13(1):141-156 PMID:38084917
    • SGD Paper
    • DOI full text
    • PubMed
  • Yang C, et al. (2024) New insights into searching patulin degrading enzymes in Saccharomyces cerevisiae through proteomic and molecular docking analysis. J Hazard Mater 463:132806 PMID:37922585
    • SGD Paper
    • DOI full text
    • PubMed
  • Guan H, et al. (2023) Diverse modes of H3K36me3-guided nucleosomal deacetylation by Rpd3S. Nature 620(7974):669-675 PMID:37468628
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lu X, et al. (2023) Analysis of the Formation of Characteristic Aroma Compounds by Amino Acid Metabolic Pathways during Fermentation with Saccharomyces cerevisiae. Molecules 28(7) PMID:37049863
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tang A and Peng B (2023) Diversifying the Flavor of Black Rice Wines through Three Different Regional Xiaoqus in China and Unraveling Their Core Functional Microorganisms. Foods 12(19) PMID:37835229
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Peng B, et al. (2022) Engineering eukaryote-like regulatory circuits to expand artificial control mechanisms for metabolic engineering in Saccharomyces cerevisiae. Commun Biol 5(1):135 PMID:35173283
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Peng B, et al. (2022) An in vivo gene amplification system for high level expression in Saccharomyces cerevisiae. Nat Commun 13(1):2895 PMID:35610221
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Plan M, et al. (2022) Analysing intracellular isoprenoid metabolites in diverse prokaryotic and eukaryotic microbes. Methods Enzymol 670:235-284 PMID:35871838
    • SGD Paper
    • DOI full text
    • PubMed
  • Hayat IF, et al. (2021) Auxin-mediated induction of GAL promoters by conditional degradation of Mig1p improves sesquiterpene production in Saccharomyces cerevisiae with engineered acetyl-CoA synthesis. Microb Biotechnol 14(6):2627-2642 PMID:34499421
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lu Z, et al. (2021) Auxin-mediated protein depletion for metabolic engineering in terpene-producing yeast. Nat Commun 12(1):1051 PMID:33594068
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Du D, et al. (2019) ElemCor: accurate data analysis and enrichment calculation for high-resolution LC-MS stable isotope labeling experiments. BMC Bioinformatics 20(1):89 PMID:30782135
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Peng B, et al. (2018) An Expanded Heterologous GAL Promoter Collection for Diauxie-Inducible Expression in Saccharomyces cerevisiae. ACS Synth Biol 7(2):748-751 PMID:29301066
    • SGD Paper
    • DOI full text
    • PubMed
  • Peng B, et al. (2018) Engineered protein degradation of farnesyl pyrophosphate synthase is an effective regulatory mechanism to increase monoterpene production in Saccharomyces cerevisiae. Metab Eng 47:83-93 PMID:29471044
    • SGD Paper
    • DOI full text
    • PubMed
  • Peng B, et al. (2017) A squalene synthase protein degradation method for improved sesquiterpene production in Saccharomyces cerevisiae. Metab Eng 39:209-219 PMID:27939849
    • SGD Paper
    • DOI full text
    • PubMed
  • Vickers CE, et al. (2017) Recent advances in synthetic biology for engineering isoprenoid production in yeast. Curr Opin Chem Biol 40:47-56 PMID:28623722
    • SGD Paper
    • DOI full text
    • PubMed
  • Hou J, et al. (2016) Mutation of a regulator Ask10p improves xylose isomerase activity through up-regulation of molecular chaperones in Saccharomyces cerevisiae. Metab Eng 38:241-250 PMID:27497973
    • SGD Paper
    • DOI full text
    • PubMed
  • Peng B, et al. (2015) Effects of Fermentation Temperature on Key Aroma Compounds and Sensory Properties of Apple Wine. J Food Sci 80(12):S2937-43 PMID:26509667
    • SGD Paper
    • DOI full text
    • PubMed
  • Peng B, et al. (2015) Controlling heterologous gene expression in yeast cell factories on different carbon substrates and across the diauxic shift: a comparison of yeast promoter activities. Microb Cell Fact 14:91 PMID:26112740
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Peng B, et al. (2015) Bacterial xylose isomerases from the mammal gut Bacteroidetes cluster function in Saccharomyces cerevisiae for effective xylose fermentation. Microb Cell Fact 14:70 PMID:25981595
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Fan C, et al. (2014) Dual matrix-based immobilized trypsin for complementary proteolytic digestion and fast proteomics analysis with higher protein sequence coverage. Anal Chem 86(3):1452-8 PMID:24447065
    • SGD Paper
    • DOI full text
    • PubMed
  • Xu L, et al. (2014) Secretory pathway engineering enhances secretion of cellobiohydrolase I from Trichoderma reesei in Saccharomyces cerevisiae. J Biosci Bioeng 117(1):45-52 PMID:23890871
    • SGD Paper
    • DOI full text
    • PubMed
  • Peng B, et al. (2012) Improvement of xylose fermentation in respiratory-deficient xylose-fermenting Saccharomyces cerevisiae. Metab Eng 14(1):9-18 PMID:22178745
    • SGD Paper
    • DOI full text
    • PubMed
  • Shen Y, et al. (2012) An efficient xylose-fermenting recombinant Saccharomyces cerevisiae strain obtained through adaptive evolution and its global transcription profile. Appl Microbiol Biotechnol 96(4):1079-91 PMID:23053078
    • SGD Paper
    • DOI full text
    • PubMed
  • Ji L, et al. (2011) Enhanced resistance of Saccharomyces cerevisiae to vanillin by expression of lacA from Trametes sp. AH28-2. Bioresour Technol 102(17):8105-9 PMID:21727001
    • SGD Paper
    • DOI full text
    • PubMed
  • Peng B, et al. (2011) [Effect of controlled overexpression of xylulokinase by different promoters on xylose metabolism in Saccharomyces cerevisiae]. Wei Sheng Wu Xue Bao 51(7):914-22 PMID:22043792
    • SGD Paper
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top