AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Morgan DO
  • References

Author: Morgan DO


References 62 references


No citations for this author.

Download References (.nbib)

  • Ng HY, et al. (2025) Phosphate-binding pocket on cyclin B governs CDK substrate phosphorylation and mitotic timing. Nat Commun 16(1):4281 PMID:40341598
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Asfaha JB, et al. (2022) Multisite phosphorylation by Cdk1 initiates delayed negative feedback to control mitotic transcription. Curr Biol 32(1):256-263.e4 PMID:34818519
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Qin L, et al. (2019) The pseudosubstrate inhibitor Acm1 inhibits the anaphase-promoting complex/cyclosome by combining high-affinity activator binding with disruption of Doc1/Apc10 function. J Biol Chem 294(46):17249-17261 PMID:31562243
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Seoane AI and Morgan DO (2017) Firing of Replication Origins Frees Dbf4-Cdc7 to Target Eco1 for Destruction. Curr Biol 27(18):2849-2855.e2 PMID:28918948
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Girard JR, et al. (2015) An E2 accessory domain increases affinity for the anaphase-promoting complex and ensures E2 competition. J Biol Chem 290(40):24614-25 PMID:26306044
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lu D, et al. (2015) Quantitative framework for ordered degradation of APC/C substrates. BMC Biol 13:96 PMID:26573515
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Eshleman HD and Morgan DO (2014) Sgo1 recruits PP2A to chromosomes to ensure sister chromatid bi-orientation during mitosis. J Cell Sci 127(Pt 22):4974-83 PMID:25236599
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lu D, et al. (2014) Multiple mechanisms determine the order of APC/C substrate degradation in mitosis. J Cell Biol 207(1):23-39 PMID:25287299
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Matsusaka T, et al. (2014) Co-activator independent differences in how the metaphase and anaphase APC/C recognise the same substrate. Biol Open 3(10):904-12 PMID:25217616
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Naylor SG and Morgan DO (2014) Cdk1-dependent phosphorylation of Iqg1 governs actomyosin ring assembly prior to cytokinesis. J Cell Sci 127(Pt 5):1128-37 PMID:24413167
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Van Voorhis VA and Morgan DO (2014) Activation of the APC/C ubiquitin ligase by enhanced E2 efficiency. Curr Biol 24(13):1556-62 PMID:24930963
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lyons NA, et al. (2013) Sequential primed kinases create a damage-responsive phosphodegron on Eco1. Nat Struct Mol Biol 20(2):194-201 PMID:23314252
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Morgan DO (2013) The D box meets its match. Mol Cell 50(5):609-10 PMID:23746347
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Foster SA and Morgan DO (2012) The APC/C subunit Mnd2/Apc15 promotes Cdc20 autoubiquitination and spindle assembly checkpoint inactivation. Mol Cell 47(6):921-32 PMID:22940250
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yaakov G, et al. (2012) Separase biosensor reveals that cohesin cleavage timing depends on phosphatase PP2A(Cdc55) regulation. Dev Cell 23(1):124-36 PMID:22814605
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Foe IT, et al. (2011) Ubiquitination of Cdc20 by the APC occurs through an intramolecular mechanism. Curr Biol 21(22):1870-7 PMID:22079111
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kõivomägi M, et al. (2011) Cascades of multisite phosphorylation control Sic1 destruction at the onset of S phase. Nature 480(7375):128-31 PMID:21993622
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kõivomägi M, et al. (2011) Dynamics of Cdk1 substrate specificity during the cell cycle. Mol Cell 42(5):610-23 PMID:21658602
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lyons NA and Morgan DO (2011) Cdk1-dependent destruction of Eco1 prevents cohesion establishment after S phase. Mol Cell 42(3):378-89 PMID:21549314
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Schaefer JB and Morgan DO (2011) Protein-linked ubiquitin chain structure restricts activity of deubiquitinating enzymes. J Biol Chem 286(52):45186-96 PMID:22072716
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rodrigo-Brenni MC, et al. (2010) Catalysis of lysine 48-specific ubiquitin chain assembly by residues in E2 and ubiquitin. Mol Cell 39(4):548-59 PMID:20797627
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Benanti JA, et al. (2009) Functionally distinct isoforms of Cik1 are differentially regulated by APC/C-mediated proteolysis. Mol Cell 33(5):581-90 PMID:19285942
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Holt LJ, et al. (2009) Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science 325(5948):1682-6 PMID:19779198
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Matyskiela ME and Morgan DO (2009) Analysis of activator-binding sites on the APC/C supports a cooperative substrate-binding mechanism. Mol Cell 34(1):68-80 PMID:19362536
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tully GH, et al. (2009) The anaphase-promoting complex promotes actomyosin-ring disassembly during cytokinesis in yeast. Mol Biol Cell 20(4):1201-12 PMID:19109423
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Enquist-Newman M, et al. (2008) Modulation of the mitotic regulatory network by APC-dependent destruction of the Cdh1 inhibitor Acm1. Mol Cell 30(4):437-46 PMID:18498748
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Holt LJ, et al. (2008) Positive feedback sharpens the anaphase switch. Nature 454(7202):353-7 PMID:18552837
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Morgan DO (2008) SnapShot: cell-cycle regulators I. Cell 135(4):764-764.e1 PMID:19013283
    • SGD Paper
    • DOI full text
    • PubMed
  • Sullivan M, et al. (2008) Cyclin-specific control of ribosomal DNA segregation. Mol Cell Biol 28(17):5328-36 PMID:18591250
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Holt LJ, et al. (2007) Evolution of Ime2 phosphorylation sites on Cdk1 substrates provides a mechanism to limit the effects of the phosphatase Cdc14 in meiosis. Mol Cell 25(5):689-702 PMID:17349956
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ko N, et al. (2007) Identification of yeast IQGAP (Iqg1p) as an anaphase-promoting-complex substrate and its role in actomyosin-ring-independent cytokinesis. Mol Biol Cell 18(12):5139-53 PMID:17942599
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rodrigo-Brenni MC and Morgan DO (2007) Sequential E2s drive polyubiquitin chain assembly on APC targets. Cell 130(1):127-39 PMID:17632060
    • SGD Paper
    • DOI full text
    • PubMed
  • Snead JL, et al. (2007) A coupled chemical-genetic and bioinformatic approach to Polo-like kinase pathway exploration. Chem Biol 14(11):1261-72 PMID:18022565
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sullivan M and Morgan DO (2007) A novel destruction sequence targets the meiotic regulator Spo13 for anaphase-promoting complex-dependent degradation in anaphase I. J Biol Chem 282(27):19710-5 PMID:17493939
    • SGD Paper
    • DOI full text
    • PubMed
  • Woodbury EL and Morgan DO (2007) The role of self-association in Fin1 function on the mitotic spindle. J Biol Chem 282(44):32138-43 PMID:17804403
    • SGD Paper
    • DOI full text
    • PubMed
  • Woodbury EL and Morgan DO (2007) Cdk and APC activities limit the spindle-stabilizing function of Fin1 to anaphase. Nat Cell Biol 9(1):106-12 PMID:17173039
    • SGD Paper
    • DOI full text
    • PubMed
  • Thornton BR, et al. (2006) An architectural map of the anaphase-promoting complex. Genes Dev 20(4):449-60 PMID:16481473
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Carroll CW and Morgan DO (2005) Enzymology of the anaphase-promoting complex. Methods Enzymol 398:219-30 PMID:16275331
    • SGD Paper
    • DOI full text
    • PubMed
  • Carroll CW, et al. (2005) The APC subunit Doc1 promotes recognition of the substrate destruction box. Curr Biol 15(1):11-8 PMID:15649358
    • SGD Paper
    • DOI full text
    • PubMed
  • Loog M and Morgan DO (2005) Cyclin specificity in the phosphorylation of cyclin-dependent kinase substrates. Nature 434(7029):104-8 PMID:15744308
    • SGD Paper
    • DOI full text
    • PubMed
    • Reference supplement
  • Ubersax JA, et al. (2003) Targets of the cyclin-dependent kinase Cdk1. Nature 425(6960):859-64 PMID:14574415
    • SGD Paper
    • DOI full text
    • PubMed
    • Reference supplement
  • Carroll CW and Morgan DO (2002) The Doc1 subunit is a processivity factor for the anaphase-promoting complex. Nat Cell Biol 4(11):880-7 PMID:12402045
    • SGD Paper
    • DOI full text
    • PubMed
  • Morgan DO and Roberts JM (2002) Oscillation sensation. Nature 418(6897):495-6 PMID:12152065
    • SGD Paper
    • DOI full text
    • PubMed
  • Bishop AC, et al. (2000) A chemical switch for inhibitor-sensitive alleles of any protein kinase. Nature 407(6802):395-401 PMID:11014197
    • SGD Paper
    • DOI full text
    • PubMed
  • Farrell A and Morgan DO (2000) Cdc37 promotes the stability of protein kinases Cdc28 and Cak1. Mol Cell Biol 20(3):749-54 PMID:10629030
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Jaspersen SL and Morgan DO (2000) Cdc14 activates cdc15 to promote mitotic exit in budding yeast. Curr Biol 10(10):615-8 PMID:10837230
    • SGD Paper
    • DOI full text
    • PubMed
  • Jaspersen SL, et al. (1999) Inhibitory phosphorylation of the APC regulator Hct1 is controlled by the kinase Cdc28 and the phosphatase Cdc14. Curr Biol 9(5):227-36 PMID:10074450
    • SGD Paper
    • DOI full text
    • PubMed
  • Morgan DO (1999) Regulation of the APC and the exit from mitosis. Nat Cell Biol 1(2):E47-53 PMID:10559897
    • SGD Paper
    • DOI full text
    • PubMed
  • Tinker-Kulberg RL and Morgan DO (1999) Pds1 and Esp1 control both anaphase and mitotic exit in normal cells and after DNA damage. Genes Dev 13(15):1936-49 PMID:10444592
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Charles JF, et al. (1998) The Polo-related kinase Cdc5 activates and is destroyed by the mitotic cyclin destruction machinery in S. cerevisiae. Curr Biol 8(9):497-507 PMID:9560342
    • SGD Paper
    • DOI full text
    • PubMed
  • Espinoza FH, et al. (1998) Cak1 is required for Kin28 phosphorylation and activation in vivo. Mol Cell Biol 18(11):6365-73 PMID:9774652
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gray NS, et al. (1998) Exploiting chemical libraries, structure, and genomics in the search for kinase inhibitors. Science 281(5376):533-8 PMID:9677190
    • SGD Paper
    • DOI full text
    • PubMed
    • Reference supplement
  • Jaspersen SL, et al. (1998) A late mitotic regulatory network controlling cyclin destruction in Saccharomyces cerevisiae. Mol Biol Cell 9(10):2803-17 PMID:9763445
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Morgan DO (1997) Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu Rev Cell Dev Biol 13:261-91 PMID:9442875
    • SGD Paper
    • DOI full text
    • PubMed
  • Espinoza FH, et al. (1996) A cyclin-dependent kinase-activating kinase (CAK) in budding yeast unrelated to vertebrate CAK. Science 273(5282):1714-7 PMID:8781234
    • SGD Paper
    • DOI full text
    • PubMed
  • Kim KK, et al. (1996) Three-dimensional structure of human cyclin H, a positive regulator of the CDK-activating kinase. Nat Struct Biol 3(10):849-55 PMID:8836101
    • SGD Paper
    • DOI full text
    • PubMed
  • Gerber MR, et al. (1995) Cdc37 is required for association of the protein kinase Cdc28 with G1 and mitotic cyclins. Proc Natl Acad Sci U S A 92(10):4651-5 PMID:7753858
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Schulze-Gahmen U, et al. (1995) Multiple modes of ligand recognition: crystal structures of cyclin-dependent protein kinase 2 in complex with ATP and two inhibitors, olomoucine and isopentenyladenine. Proteins 22(4):378-91 PMID:7479711
    • SGD Paper
    • DOI full text
    • PubMed
  • Espinoza FH, et al. (1994) Cell cycle control by a complex of the cyclin HCS26 (PCL1) and the kinase PHO85. Science 266(5189):1388-91 PMID:7973730
    • SGD Paper
    • DOI full text
    • PubMed
  • Graña X, et al. (1994) PITALRE, a nuclear CDC2-related protein kinase that phosphorylates the retinoblastoma protein in vitro. Proc Natl Acad Sci U S A 91(9):3834-8 PMID:8170997
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • De Bondt HL, et al. (1993) Crystal structure of cyclin-dependent kinase 2. Nature 363(6430):595-602 PMID:8510751
    • SGD Paper
    • DOI full text
    • PubMed
  • Rosenblatt J, et al. (1993) Purification and crystallization of human cyclin-dependent kinase 2. J Mol Biol 230(4):1317-9 PMID:8487311
    • SGD Paper
    • DOI full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top