AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Mayer A
  • References

Author: Mayer A


References 75 references


No citations for this author.

Download References (.nbib)

  • Alves AC, et al. (2025) FRAP Assay to Trace Lipid Mixing of the Inner and Outer Leaflet of Yeast Vacuoles: Assessing the Fusion State in Live Cells. Methods Mol Biol 2887:197-206 PMID:39806156
    • SGD Paper
    • DOI full text
    • PubMed
  • Chen KE, et al. (2025) Molecular basis for the assembly of the Vps5-Vps17 SNX-BAR proteins with Retromer. Nat Commun 16(1):3568 PMID:40234461
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kim GD, et al. (2025) Pools of Independently Cycling Inositol Phosphates Revealed by Pulse Labeling with 18O-Water. J Am Chem Soc 147(21):17626-17641 PMID:40372010
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gopaldass N and Mayer A (2024) PROPPINs and membrane fission in the endo-lysosomal system. Biochem Soc Trans 52(3):1233-1241 PMID:38747700
    • SGD Paper
    • DOI full text
    • PubMed
  • Mayer A, et al. (2024) Mitigating transcription noise via protein sharing in syncytial cells. Biophys J 123(8):968-978 PMID:38459697
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Chabert V, et al. (2023) Inositol pyrophosphate dynamics reveals control of the yeast phosphate starvation program through 1,5-IP8 and the SPX domain of Pho81. Elife 12 PMID:37728314
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gopaldass N, et al. (2023) Retromer oligomerization drives SNX-BAR coat assembly and membrane constriction. EMBO J 42(2):e112287 PMID:36644906
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kim GD, et al. (2023) Metabolic Consequences of Polyphosphate Synthesis and Imminent Phosphate Limitation. mBio 14(3):e0010223 PMID:37074217
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Liu W, et al. (2023) Cryo-EM structure of the polyphosphate polymerase VTC reveals coupling of polymer synthesis to membrane transit. EMBO J 42(10):e113320 PMID:37066886
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mann D, et al. (2023) Atg18 oligomer organization in assembled tubes and on lipid membrane scaffolds. Nat Commun 14(1):8086 PMID:38057304
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Pipercevic J, et al. (2023) Inositol pyrophosphates activate the vacuolar transport chaperone complex in yeast by disrupting a homotypic SPX domain interaction. Nat Commun 14(1):2645 PMID:37156835
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Courtellemont T, et al. (2022) CROP: a retromer-PROPPIN complex mediating membrane fission in the endo-lysosomal system. EMBO J 41(10):e109646 PMID:35466426
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Austin S and Mayer A (2020) Phosphate Homeostasis - A Vital Metabolic Equilibrium Maintained Through the INPHORS Signaling Pathway. Front Microbiol 11:1367 PMID:32765429
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Jiménez-Martín A, et al. (2020) The Mgs1/WRNIP1 ATPase is required to prevent a recombination salvage pathway at damaged replication forks. Sci Adv 6(15):eaaz3327 PMID:32285001
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cools M, et al. (2019) Measuring the Activity of Plasma Membrane and Vacuolar Transporters in Yeast. Methods Mol Biol 2049:247-261 PMID:31602616
    • SGD Paper
    • DOI full text
    • PubMed
  • D'Agostino M and Mayer A (2019) Assay of Lipid Mixing and Fusion Pore Formation in the Fusion of Yeast Vacuoles. Methods Mol Biol 1860:253-262 PMID:30317510
    • SGD Paper
    • DOI full text
    • PubMed
  • D'Agostino M, et al. (2018) SNARE-mediated membrane fusion arrests at pore expansion to regulate the volume of an organelle. EMBO J 37(19) PMID:30120144
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • D'Agostino M, et al. (2017) A tethering complex drives the terminal stage of SNARE-dependent membrane fusion. Nature 551(7682):634-638 PMID:29088698
    • SGD Paper
    • DOI full text
    • PubMed
  • Gerasimaite R, et al. (2017) Inositol Pyrophosphate Specificity of the SPX-Dependent Polyphosphate Polymerase VTC. ACS Chem Biol 12(3):648-653 PMID:28186404
    • SGD Paper
    • DOI full text
    • PubMed
  • Gerasimaitė R and Mayer A (2017) Ppn2, a novel Zn2+-dependent polyphosphatase in the acidocalcisome-like yeast vacuole. J Cell Sci 130(9):1625-1636 PMID:28302909
    • SGD Paper
    • DOI full text
    • PubMed
  • Gopaldass N, et al. (2017) Membrane scission driven by the PROPPIN Atg18. EMBO J 36(22):3274-3291 PMID:29030482
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Klompmaker SH, et al. (2017) Magnesium uptake by connecting fluid-phase endocytosis to an intracellular inorganic cation filter. Nat Commun 8(1):1879 PMID:29192218
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • D'Agostino M, et al. (2016) Steric hindrance of SNARE transmembrane domain organization impairs the hemifusion-to-fusion transition. EMBO Rep 17(11):1590-1608 PMID:27644261
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Desfougères Y, et al. (2016) Organelle acidification negatively regulates vacuole membrane fusion in vivo. Sci Rep 6:29045 PMID:27363625
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Desfougères Y, et al. (2016) Vtc5, a Novel Subunit of the Vacuolar Transporter Chaperone Complex, Regulates Polyphosphate Synthesis and Phosphate Homeostasis in Yeast. J Biol Chem 291(42):22262-22275 PMID:27587415
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Desfougères Y, et al. (2016) Organelle size control - increasing vacuole content activates SNAREs to augment organelle volume through homotypic fusion. J Cell Sci 129(14):2817-28 PMID:27252384
    • SGD Paper
    • DOI full text
    • PubMed
  • Gerasimaitė R and Mayer A (2016) Enzymes of yeast polyphosphate metabolism: structure, enzymology and biological roles. Biochem Soc Trans 44(1):234-9 PMID:26862210
    • SGD Paper
    • DOI full text
    • PubMed
  • Wild R, et al. (2016) Control of eukaryotic phosphate homeostasis by inositol polyphosphate sensor domains. Science 352(6288):986-90 PMID:27080106
    • SGD Paper
    • DOI full text
    • PubMed
  • Pieren M, et al. (2015) Vacuolar SNARE protein transmembrane domains serve as nonspecific membrane anchors with unequal roles in lipid mixing. J Biol Chem 290(20):12821-32 PMID:25817997
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gerasimaitė R, et al. (2014) Coupled synthesis and translocation restrains polyphosphate to acidocalcisome-like vacuoles and prevents its toxicity. J Cell Sci 127(Pt 23):5093-104 PMID:25315834
    • SGD Paper
    • DOI full text
    • PubMed
  • Hirschmann WD, et al. (2014) Scp160p is required for translational efficiency of codon-optimized mRNAs in yeast. Nucleic Acids Res 42(6):4043-55 PMID:24445806
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Alpadi K, et al. (2013) Dynamin-SNARE interactions control trans-SNARE formation in intracellular membrane fusion. Nat Commun 4:1704 PMID:23591871
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Heo DH, et al. (2013) The RNA polymerase II C-terminal domain-interacting domain of yeast Nrd1 contributes to the choice of termination pathway and couples to RNA processing by the nuclear exosome. J Biol Chem 288(51):36676-90 PMID:24196955
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Meinel DM, et al. (2013) Recruitment of TREX to the transcription machinery by its direct binding to the phospho-CTD of RNA polymerase II. PLoS Genet 9(11):e1003914 PMID:24244187
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Michaillat L and Mayer A (2013) Identification of genes affecting vacuole membrane fragmentation in Saccharomyces cerevisiae. PLoS One 8(2):e54160 PMID:23383298
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Alpadi K, et al. (2012) Sequential analysis of trans-SNARE formation in intracellular membrane fusion. PLoS Biol 10(1):e1001243 PMID:22272185
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mayer A, et al. (2012) CTD tyrosine phosphorylation impairs termination factor recruitment to RNA polymerase II. Science 336(6089):1723-5 PMID:22745433
    • SGD Paper
    • DOI full text
    • PubMed
  • Mayer A, et al. (2012) The spt5 C-terminal region recruits yeast 3' RNA cleavage factor I. Mol Cell Biol 32(7):1321-31 PMID:22290438
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Michaillat L, et al. (2012) Cell-free reconstitution of vacuole membrane fragmentation reveals regulation of vacuole size and number by TORC1. Mol Biol Cell 23(5):881-95 PMID:22238359
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zieger M and Mayer A (2012) Yeast vacuoles fragment in an asymmetrical two-phase process with distinct protein requirements. Mol Biol Cell 23(17):3438-49 PMID:22787281
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Blattner C, et al. (2011) Molecular basis of Rrn3-regulated RNA polymerase I initiation and cell growth. Genes Dev 25(19):2093-105 PMID:21940764
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Miller C, et al. (2011) Dynamic transcriptome analysis measures rates of mRNA synthesis and decay in yeast. Mol Syst Biol 7:458 PMID:21206491
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Müller M, et al. (2011) A cytoplasmic complex mediates specific mRNA recognition and localization in yeast. PLoS Biol 9(4):e1000611 PMID:21526221
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Strasser B, et al. (2011) The V-ATPase proteolipid cylinder promotes the lipid-mixing stage of SNARE-dependent fusion of yeast vacuoles. EMBO J 30(20):4126-41 PMID:21934648
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Clausing E, et al. (2010) The transcription elongation factor Bur1-Bur2 interacts with replication protein A and maintains genome stability during replication stress. J Biol Chem 285(53):41665-74 PMID:21075850
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Dawaliby R and Mayer A (2010) Microautophagy of the nucleus coincides with a vacuolar diffusion barrier at nuclear-vacuolar junctions. Mol Biol Cell 21(23):4173-83 PMID:20943953
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mayer A, et al. (2010) Uniform transitions of the general RNA polymerase II transcription complex. Nat Struct Mol Biol 17(10):1272-8 PMID:20818391
    • SGD Paper
    • DOI full text
    • PubMed
  • Pieren M, et al. (2010) The SM protein Vps33 and the t-SNARE H(abc) domain promote fusion pore opening. Nat Struct Mol Biol 17(6):710-7 PMID:20453860
    • SGD Paper
    • DOI full text
    • PubMed
  • Röther S, et al. (2010) Nucleocytoplasmic shuttling of the La motif-containing protein Sro9 might link its nuclear and cytoplasmic functions. RNA 16(7):1393-401 PMID:20494970
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sun M, et al. (2010) A tandem SH2 domain in transcription elongation factor Spt6 binds the phosphorylated RNA polymerase II C-terminal repeat domain (CTD). J Biol Chem 285(53):41597-603 PMID:20926372
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Dengl S, et al. (2009) Structure and in vivo requirement of the yeast Spt6 SH2 domain. J Mol Biol 389(1):211-25 PMID:19371747
    • SGD Paper
    • DOI full text
    • PubMed
  • Hothorn M, et al. (2009) Catalytic core of a membrane-associated eukaryotic polyphosphate polymerase. Science 324(5926):513-6 PMID:19390046
    • SGD Paper
    • DOI full text
    • PubMed
  • Mayer A (2008) Cell-free reconstitution of microautophagy in yeast. Methods Enzymol 451:151-62 PMID:19185719
    • SGD Paper
    • DOI full text
    • PubMed
  • Uttenweiler A and Mayer A (2008) Microautophagy in the yeast Saccharomyces cerevisiae. Methods Mol Biol 445:245-59 PMID:18425455
    • SGD Paper
    • DOI full text
    • PubMed
  • Baars TL, et al. (2007) Role of the V-ATPase in regulation of the vacuolar fission-fusion equilibrium. Mol Biol Cell 18(10):3873-82 PMID:17652457
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Uttenweiler A, et al. (2007) The vacuolar transporter chaperone (VTC) complex is required for microautophagy. Mol Biol Cell 18(1):166-75 PMID:17079729
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Reese C and Mayer A (2005) Transition from hemifusion to pore opening is rate limiting for vacuole membrane fusion. J Cell Biol 171(6):981-90 PMID:16365164
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Uttenweiler A, et al. (2005) Microautophagic vacuole invagination requires calmodulin in a Ca2+-independent function. J Biol Chem 280(39):33289-97 PMID:16055436
    • SGD Paper
    • DOI full text
    • PubMed
  • Kunz JB, et al. (2004) Determination of four sequential stages during microautophagy in vitro. J Biol Chem 279(11):9987-96 PMID:14679207
    • SGD Paper
    • DOI full text
    • PubMed
  • Peters C, et al. (2004) Mutual control of membrane fission and fusion proteins. Cell 119(5):667-78 PMID:15550248
    • SGD Paper
    • DOI full text
    • PubMed
  • Bayer MJ, et al. (2003) Vacuole membrane fusion: V0 functions after trans-SNARE pairing and is coupled to the Ca2+-releasing channel. J Cell Biol 162(2):211-22 PMID:12876274
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Müller O, et al. (2003) Role of the Vtc proteins in V-ATPase stability and membrane trafficking. J Cell Sci 116(Pt 6):1107-15 PMID:12584253
    • SGD Paper
    • DOI full text
    • PubMed
  • Müller O, et al. (2002) The Vtc proteins in vacuole fusion: coupling NSF activity to V(0) trans-complex formation. EMBO J 21(3):259-69 PMID:11823419
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Müller O, et al. (2001) Cdc42p functions at the docking stage of yeast vacuole membrane fusion. EMBO J 20(20):5657-65 PMID:11598009
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Peters C, et al. (2001) Trans-complex formation by proteolipid channels in the terminal phase of membrane fusion. Nature 409(6820):581-8 PMID:11214310
    • SGD Paper
    • DOI full text
    • PubMed
  • Mayer A, et al. (2000) Phosphatidylinositol 4,5-bisphosphate regulates two steps of homotypic vacuole fusion. Mol Biol Cell 11(3):807-17 PMID:10712501
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Müller O, et al. (2000) Autophagic tubes: vacuolar invaginations involved in lateral membrane sorting and inverse vesicle budding. J Cell Biol 151(3):519-28 PMID:11062254
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sattler T and Mayer A (2000) Cell-free reconstitution of microautophagic vacuole invagination and vesicle formation. J Cell Biol 151(3):529-38 PMID:11062255
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Peters C, et al. (1999) Control of the terminal step of intracellular membrane fusion by protein phosphatase 1. Science 285(5430):1084-7 PMID:10446058
    • SGD Paper
    • DOI full text
    • PubMed
  • Peters C and Mayer A (1998) Ca2+/calmodulin signals the completion of docking and triggers a late step of vacuole fusion. Nature 396(6711):575-80 PMID:9859992
    • SGD Paper
    • DOI full text
    • PubMed
  • Rapaport D, et al. (1998) cis and trans sites of the TOM complex of mitochondria in unfolding and initial translocation of preproteins. J Biol Chem 273(15):8806-13 PMID:9535859
    • SGD Paper
    • DOI full text
    • PubMed
  • Mayer A and Wickner W (1997) Docking of yeast vacuoles is catalyzed by the Ras-like GTPase Ypt7p after symmetric priming by Sec18p (NSF). J Cell Biol 136(2):307-17 PMID:9015302
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Xu Z, et al. (1997) A heterodimer of thioredoxin and I(B)2 cooperates with Sec18p (NSF) to promote yeast vacuole inheritance. J Cell Biol 136(2):299-306 PMID:9015301
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mayer A, et al. (1996) Sec18p (NSF)-driven release of Sec17p (alpha-SNAP) can precede docking and fusion of yeast vacuoles. Cell 85(1):83-94 PMID:8620540
    • SGD Paper
    • DOI full text
    • PubMed
  • Blumenfeld N, et al. (1994) Purification and characterization of a novel species of ubiquitin-carrier protein, E2, that is involved in degradation of non-"N-end rule" protein substrates. J Biol Chem 269(13):9574-81 PMID:8144544
    • SGD Paper
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top