Engelberg D, et al. (2025) The Saccharomyces cerevisiae ∑1278b strain is sensitive to NaCl because of mutations in its ENA1 gene. FEMS Yeast Res PMID:40317084
Maayan I, et al. (2012) Osmostress induces autophosphorylation of Hog1 via a C-terminal regulatory region that is conserved in p38α. PLoS One 7(9):e44749 PMID:22984552
Levin-Salomon V, et al. (2009) When expressed in yeast, mammalian mitogen-activated protein kinases lose proper regulation and become spontaneously phosphorylated. Biochem J 417(1):331-40 PMID:18778243
Marbach I, et al. (2001) Gcn2 mediates Gcn4 activation in response to glucose stimulation or UV radiation not via GCN4 translation. J Biol Chem 276(20):16944-51 PMID:11350978
Gross A, et al. (1999) The N-terminal half of Cdc25 is essential for processing glucose signaling in Saccharomyces cerevisiae. Biochemistry 38(40):13252-62 PMID:10529198
Zimmermann S, et al. (1999) UV-responsive genes of arabidopsis revealed by similarity to the Gcn4-mediated UV response in yeast. J Biol Chem 274(24):17017-24 PMID:10358052
Yablonski D, et al. (1996) Dimerization of Ste5, a mitogen-activated protein kinase cascade scaffold protein, is required for signal transduction. Proc Natl Acad Sci U S A 93(24):13864-9 PMID:8943027
Hurwitz N, et al. (1995) Differential activation of yeast adenylyl cyclase by Ras1 and Ras2 depends on the conserved N terminus. Proc Natl Acad Sci U S A 92(24):11009-13 PMID:7479926
Gross E, et al. (1992) Anti-Cdc25 antibodies inhibit guanyl nucleotide-dependent adenylyl cyclase of Saccharomyces cerevisiae and cross-react with a 150-kilodalton mammalian protein. Mol Cell Biol 12(6):2653-61 PMID:1588963
Segal M, et al. (1992) Interaction between the Saccharomyces cerevisiae CDC25 gene product and mammalian ras. J Biol Chem 267(32):22747-51 PMID:1429624