AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Lodi T
  • References

Author: Lodi T


References 57 references


No citations for this author.

Download References (.nbib)

  • Baruch-Torres N, et al. (2025) A steric gate prevents mutagenic dATP incorporation opposite 8-oxo-deoxyguanosine in mitochondrial DNA polymerases. FEBS J PMID:40070220
    • SGD Paper
    • DOI full text
    • PubMed
  • Aleo SJ, et al. (2021) Drug repositioning as a therapeutic strategy for neurodegenerations associated with OPA1 mutations. Hum Mol Genet 29(22):3631-3645 PMID:33231680
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ceccatelli Berti C, et al. (2021) The Power of Yeast in Modelling Human Nuclear Mutations Associated with Mitochondrial Diseases. Genes (Basel) 12(2) PMID:33672627
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • di Punzio G, et al. (2021) A Yeast-Based Screening Unravels Potential Therapeutic Molecules for Mitochondrial Diseases Associated with Dominant ANT1 Mutations. Int J Mol Sci 22(9) PMID:33923309
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • di Punzio G, et al. (2021) A Yeast-Based Repurposing Approach for the Treatment of Mitochondrial DNA Depletion Syndromes Led to the Identification of Molecules Able to Modulate the dNTP Pool. Int J Mol Sci 22(22) PMID:34830106
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Baruffini E, et al. (2020) Mechanistic insights on the mode of action of an antiproliferative thiosemicarbazone-nickel complex revealed by an integrated chemogenomic profiling study. Sci Rep 10(1):10524 PMID:32601343
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hoyos-Gonzalez N, et al. (2020) Modeling of pathogenic variants of mitochondrial DNA polymerase: insight into the replication defects and implication for human disease. Biochim Biophys Acta Gen Subj 1864(7):129608 PMID:32234506
    • SGD Paper
    • DOI full text
    • PubMed
  • Daghino S, et al. (2019) Yeast expression of mammalian Onzin and fungal FCR1 suggests ancestral functions of PLAC8 proteins in mitochondrial metabolism and DNA repair. Sci Rep 9(1):6629 PMID:31036870
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Dallabona C, et al. (2019) Sabotage at the Powerhouse? Unraveling the Molecular Target of 2-Isopropylbenzaldehyde Thiosemicarbazone, a Specific Inhibitor of Aflatoxin Biosynthesis and Sclerotia Development in Aspergillus flavus, Using Yeast as a Model System. Molecules 24(16) PMID:31426298
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Trasviña-Arenas CH, et al. (2019) Amino and carboxy-terminal extensions of yeast mitochondrial DNA polymerase assemble both the polymerization and exonuclease active sites. Mitochondrion 49:166-177 PMID:31445096
    • SGD Paper
    • DOI full text
    • PubMed
  • Del Dotto V, et al. (2018) Deciphering OPA1 mutations pathogenicity by combined analysis of human, mouse and yeast cell models. Biochim Biophys Acta Mol Basis Dis 1864(10):3496-3514 PMID:30293569
    • SGD Paper
    • DOI full text
    • PubMed
  • Dallabona C, et al. (2017) Dominance of yeast aac2R96H and aac2R252G mutations, equivalent to pathological mutations in ant1, is due to gain of function. Biochem Biophys Res Commun 493(2):909-913 PMID:28947214
    • SGD Paper
    • DOI full text
    • PubMed
  • Degola F, et al. (2017) Structural modification of cuminaldehyde thiosemicarbazone increases inhibition specificity toward aflatoxin biosynthesis and sclerotia development in Aspergillus flavus. Appl Microbiol Biotechnol 101(17):6683-6696 PMID:28725928
    • SGD Paper
    • DOI full text
    • PubMed
  • Garone C, et al. (2017) Defective mitochondrial rRNA methyltransferase MRM2 causes MELAS-like clinical syndrome. Hum Mol Genet 26(21):4257-4266 PMID:28973171
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Baruffini E, et al. (2015) Polymorphisms in DNA polymerase γ affect the mtDNA stability and the NRTI-induced mitochondrial toxicity in Saccharomyces cerevisiae. Mitochondrion 20:52-63 PMID:25462018
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hadchouel A, et al. (2015) Biallelic Mutations of Methionyl-tRNA Synthetase Cause a Specific Type of Pulmonary Alveolar Proteinosis Prevalent on Réunion Island. Am J Hum Genet 96(5):826-31 PMID:25913036
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lodi T, et al. (2015) DNA polymerase γ and disease: what we have learned from yeast. Front Genet 6:106 PMID:25852747
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Nolli C, et al. (2015) Validation of a MGM1/OPA1 chimeric gene for functional analysis in yeast of mutations associated with dominant optic atrophy. Mitochondrion 25:38-48 PMID:26455272
    • SGD Paper
    • DOI full text
    • PubMed
  • Ang SK, et al. (2014) Mitochondrial thiol oxidase Erv1: both shuttle cysteine residues are required for its function with distinct roles. Biochem J 460(2):199-210 PMID:24625320
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Baruffini E, et al. (2012) Overexpression of DNA polymerase zeta reduces the mitochondrial mutability caused by pathological mutations in DNA polymerase gamma in yeast. PLoS One 7(3):e34322 PMID:22470557
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zara G, et al. (2012) FLO11 expression and lipid biosynthesis are required for air-liquid biofilm formation in a Saccharomyces cerevisiae flor strain. FEMS Yeast Res 12(7):864-6 PMID:22805178
    • SGD Paper
    • DOI full text
    • PubMed
  • Baruffini E, et al. (2011) Predicting the contribution of novel POLG mutations to human disease through analysis in yeast model. Mitochondrion 11(1):182-90 PMID:20883824
    • SGD Paper
    • DOI full text
    • PubMed
  • Baruffini E and Lodi T (2010) Construction and validation of a yeast model system for studying in vivo the susceptibility to nucleoside analogues of DNA polymerase gamma allelic variants. Mitochondrion 10(2):183-7 PMID:19887119
    • SGD Paper
    • DOI full text
    • PubMed
  • Baruffini E, et al. (2009) Construction and characterization of centromeric, episomal and GFP-containing vectors for Saccharomyces cerevisiae prototrophic strains. J Biotechnol 143(4):247-54 PMID:19683551
    • SGD Paper
    • DOI full text
    • PubMed
  • Di Fonzo A, et al. (2009) The mitochondrial disulfide relay system protein GFER is mutated in autosomal-recessive myopathy with cataract and combined respiratory-chain deficiency. Am J Hum Genet 84(5):594-604 PMID:19409522
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zara G, et al. (2009) Oxygen is required to restore flor strain viability and lipid biosynthesis under fermentative conditions. FEMS Yeast Res 9(2):217-25 PMID:19220867
    • SGD Paper
    • DOI full text
    • PubMed
  • Mannazzu I, et al. (2008) Behaviour of Saccharomyces cerevisiae wine strains during adaptation to unfavourable conditions of fermentation on synthetic medium: cell lipid composition, membrane integrity, viability and fermentative activity. Int J Food Microbiol 121(1):84-91 PMID:18055051
    • SGD Paper
    • DOI full text
    • PubMed
  • Barberio C, et al. (2007) Induction and characterization of morphologic mutants in a natural Saccharomyces cerevisiae strain. Can J Microbiol 53(2):223-30 PMID:17496970
    • SGD Paper
    • DOI full text
    • PubMed
  • Baruffini E, et al. (2007) A single nucleotide polymorphism in the DNA polymerase gamma gene of Saccharomyces cerevisiae laboratory strains is responsible for increased mitochondrial DNA mutability. Genetics 177(2):1227-31 PMID:17720904
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lodi T, et al. (2007) Evolution of the carboxylate Jen transporters in fungi. FEMS Yeast Res 7(5):646-56 PMID:17498214
    • SGD Paper
    • DOI full text
    • PubMed
  • Saliola M, et al. (2007) Deletion of the glucose-6-phosphate dehydrogenase gene KlZWF1 affects both fermentative and respiratory metabolism in Kluyveromyces lactis. Eukaryot Cell 6(1):19-27 PMID:17085636
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Baruffini E, et al. (2006) Genetic and chemical rescue of the Saccharomyces cerevisiae phenotype induced by mitochondrial DNA polymerase mutations associated with progressive external ophthalmoplegia in humans. Hum Mol Genet 15(19):2846-55 PMID:16940310
    • SGD Paper
    • DOI full text
    • PubMed
  • Lodi T, et al. (2006) Mutation D104G in ANT1 gene: complementation study in Saccharomyces cerevisiae as a model system. Biochem Biophys Res Commun 341(3):810-5 PMID:16438935
    • SGD Paper
    • DOI full text
    • PubMed
  • Lodi T, et al. (2005) Secretion of human serum albumin by Kluyveromyces lactis overexpressing KlPDI1 and KlERO1. Appl Environ Microbiol 71(8):4359-63 PMID:16085825
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Palmieri L, et al. (2005) Complete loss-of-function of the heart/muscle-specific adenine nucleotide translocator is associated with mitochondrial myopathy and cardiomyopathy. Hum Mol Genet 14(20):3079-88 PMID:16155110
    • SGD Paper
    • DOI full text
    • PubMed
  • Fontanesi F, et al. (2004) Mutations in AAC2, equivalent to human adPEO-associated ANT1 mutations, lead to defective oxidative phosphorylation in Saccharomyces cerevisiae and affect mitochondrial DNA stability. Hum Mol Genet 13(9):923-34 PMID:15016764
    • SGD Paper
    • DOI full text
    • PubMed
  • Lodi T, et al. (2004) Carboxylic acids permeases in yeast: two genes in Kluyveromyces lactis. Gene 339:111-9 PMID:15363851
    • SGD Paper
    • DOI full text
    • PubMed
  • Saliola M, et al. (2004) The deletion of the succinate dehydrogenase gene KlSDH1 in Kluyveromyces lactis does not lead to respiratory deficiency. Eukaryot Cell 3(3):589-97 PMID:15189981
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Alberti A, et al. (2003) LYS2 gene and its mutation in Kluyveromyces lactis. Yeast 20(14):1171-5 PMID:14587101
    • SGD Paper
    • DOI full text
    • PubMed
  • Alberti A, et al. (2003) MIG1-dependent and MIG1-independent regulation of GAL gene expression in Saccharomyces cerevisiae: role of Imp2p. Yeast 20(13):1085-96 PMID:14558142
    • SGD Paper
    • DOI full text
    • PubMed
  • Lodi T, et al. (2002) Co-ordinate regulation of lactate metabolism genes in yeast: the role of the lactate permease gene JEN1. Mol Genet Genomics 266(5):838-47 PMID:11810259
    • SGD Paper
    • DOI full text
    • PubMed
  • Lodi T, et al. (2001) Three target genes for the transcriptional activator Cat8p of Kluyveromyces lactis: acetyl coenzyme A synthetase genes KlACS1 and KlACS2 and lactate permease gene KlJEN1. J Bacteriol 183(18):5257-61 PMID:11514507
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Alberti A, et al. (2000) Current awareness on yeast. Yeast 16(7):667-74 PMID:10806429
    • SGD Paper
    • DOI full text
    • PubMed
  • Alberti A, et al. (2000) Cloning and characterization of the lactate-specific inducible gene KlCYB2, encoding the cytochrome b(2) of Kluyveromyces lactis. Yeast 16(7):657-65 PMID:10806428
    • SGD Paper
    • DOI full text
    • PubMed
  • Lodi T, et al. (1999) Regulation of the Saccharomyces cerevisiae DLD1 gene encoding the mitochondrial protein D-lactate ferricytochrome c oxidoreductase by HAP1 and HAP2/3/4/5. Mol Gen Genet 262(4-5):623-32 PMID:10628845
    • SGD Paper
    • DOI full text
    • PubMed
  • Viola AM, et al. (1999) A Klaac null mutant of Kluyveromyces lactis is complemented by a single copy of the Saccharomyces cerevisiae AAC1 gene. Curr Genet 36(1-2):29-36 PMID:10447592
    • SGD Paper
    • DOI full text
    • PubMed
  • Lodi T, et al. (1998) Transcriptional regulation of the KlDLD gene, encoding the mitochondrial enzyme D-lactate ferricytochrome c oxidoreductase in Kluyveromyces lactis: effect of Klhap2 and fog mutations. Curr Genet 34(1):12-20 PMID:9683671
    • SGD Paper
    • DOI full text
    • PubMed
  • Goffrini P, et al. (1996) FOG1 and FOG2 genes, required for the transcriptional activation of glucose-repressible genes of Kluyveromyces lactis, are homologous to GAL83 and SNF1 of saccharomyces cerevisiae. Curr Genet 29(4):316-26 PMID:8598052
    • SGD Paper
    • PubMed
  • Lodi T, et al. (1996) Characterization of a promoter mutation in the CYP3 gene of Saccharomyces cerevisiae which cancels regulation by Cyp1p (Hap1p) without affecting its binding site. Mol Gen Genet 253(1-2):103-10 PMID:9003293
    • SGD Paper
    • DOI full text
    • PubMed
  • Lodi T, et al. (1995) IMP2, a gene involved in the expression of glucose-repressible genes in Saccharomyces cerevisiae. Microbiology (Reading) 141 ( Pt 9):2201-9 PMID:7496532
    • SGD Paper
    • DOI full text
    • PubMed
  • Lodi T, et al. (1994) Carbon catabolite repression in Kluyveromyces lactis: isolation and characterization of the KIDLD gene encoding the mitochondrial enzyme D-lactate ferricytochrome c oxidoreductase. Mol Gen Genet 244(6):622-9 PMID:7969031
    • SGD Paper
    • DOI full text
    • PubMed
  • Lodi T and Ferrero I (1993) Isolation of the DLD gene of Saccharomyces cerevisiae encoding the mitochondrial enzyme D-lactate ferricytochrome c oxidoreductase. Mol Gen Genet 238(3):315-24 PMID:8492799
    • SGD Paper
    • DOI full text
    • PubMed
  • Donnini C, et al. (1992) Allelism of IMP1 and GAL2 genes of Saccharomyces cerevisiae. J Bacteriol 174(10):3411-5 PMID:1577709
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Donnini C, et al. (1992) IMP2, a nuclear gene controlling the mitochondrial dependence of galactose, maltose and raffinose utilization in Saccharomyces cerevisiae. Yeast 8(2):83-93 PMID:1561839
    • SGD Paper
    • DOI full text
    • PubMed
  • Lodi T and Guiard B (1991) Complex transcriptional regulation of the Saccharomyces cerevisiae CYB2 gene encoding cytochrome b2: CYP1(HAP1) activator binds to the CYB2 upstream activation site UAS1-B2. Mol Cell Biol 11(7):3762-72 PMID:2046677
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lodi T, et al. (1991) Catabolite repression by galactose in overexpressed GAL4 strains of Saccharomyces cerevisiae. J Gen Microbiol 137(5):1039-44 PMID:1865178
    • SGD Paper
    • DOI full text
    • PubMed
  • Marmiroli N and Lodi T (1984) Effect of erythromycin upon the protein pattern of heat shocked S. cerevisiae : Identification of new classes of heat-shock and heat-stroke products. Curr Genet 8(6):429-37 PMID:24177913
    • SGD Paper
    • DOI full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top