AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Kaeberlein M
  • References

Author: Kaeberlein M


References 106 references


No citations for this author.

Download References (.nbib)

  • McLean S, et al. (2024) Molecular mechanisms of genotype-dependent lifespan variation mediated by caloric restriction: insight from wild yeast isolates. Front Aging 5:1408160 PMID:39055969
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Phua CZJ, et al. (2023) Genetic perturbation of mitochondrial function reveals functional role for specific mitonuclear genes, metabolites, and pathways that regulate lifespan. Geroscience 45(4):2161-2178 PMID:37086368
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lee MB, et al. (2022) Correction to: Pterocarpus marsupium extract extends replicative lifespan in budding yeast. Geroscience 44(3):1889 PMID:35320492
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Oz N, et al. (2022) Evidence that conserved essential genes are enriched for pro-longevity factors. Geroscience 44(4):1995-2006 PMID:35695982
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Patnaik PK, et al. (2022) Deficiency of the RNA-binding protein Cth2 extends yeast replicative lifespan by alleviating its repressive effects on mitochondrial function. Cell Rep 40(3):111113 PMID:35858543
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Garcia DM, et al. (2021) A prion accelerates proliferation at the expense of lifespan. Elife 10 PMID:34545808
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kaya A, et al. (2021) Evolution of natural lifespan variation and molecular strategies of extended lifespan in yeast. Elife 10 PMID:34751131
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lee MB, et al. (2021) Pterocarpus marsupium extract extends replicative lifespan in budding yeast. Geroscience 43(5):2595-2609 PMID:34297314
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yu R, et al. (2021) Inactivating histone deacetylase HDA promotes longevity by mobilizing trehalose metabolism. Nat Commun 12(1):1981 PMID:33790287
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Chen KL, et al. (2020) Loss of vacuolar acidity results in iron-sulfur cluster defects and divergent homeostatic responses during aging in Saccharomyces cerevisiae. Geroscience 42(2):749-764 PMID:31975050
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Crane MM, et al. (2020) Trajectories of Aging: How Systems Biology in Yeast Can Illuminate Mechanisms of Personalized Aging. Proteomics 20(5-6):e1800420 PMID:31385433
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Maitra N, et al. (2020) Translational control of one-carbon metabolism underpins ribosomal protein phenotypes in cell division and longevity. Elife 9 PMID:32432546
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mouton SN, et al. (2020) A physicochemical perspective of aging from single-cell analysis of pH, macromolecular and organellar crowding in yeast. Elife 9 PMID:32990592
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Struyfs C, et al. (2020) The antifungal plant defensin HsAFP1 induces autophagy, vacuolar dysfunction and cell cycle impairment in yeast. Biochim Biophys Acta Biomembr 1862(8):183255 PMID:32145284
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zou K, et al. (2020) Life span extension by glucose restriction is abrogated by methionine supplementation: Cross-talk between glucose and methionine and implication of methionine as a key regulator of life span. Sci Adv 6(32):eaba1306 PMID:32821821
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Chen KL, et al. (2019) An inexpensive microscopy system for microfluidic studies in budding yeast. Transl Med Aging 3:52-56 PMID:31511839
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Crane MM, et al. (2019) Rb analog Whi5 regulates G1 to S transition and cell size but not replicative lifespan in budding yeast. Transl Med Aging 3:104-108 PMID:32190787
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lee MB, et al. (2019) Defining the impact of mutation accumulation on replicative lifespan in yeast using cancer-associated mutator phenotypes. Proc Natl Acad Sci U S A 116(8):3062-3071 PMID:30718408
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rempel IL, et al. (2019) Age-dependent deterioration of nuclear pore assembly in mitotic cells decreases transport dynamics. Elife 8 PMID:31157618
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sanchez JC, et al. (2019) Phenotypic and Genotypic Consequences of CRISPR/Cas9 Editing of the Replication Origins in the rDNA of Saccharomyces cerevisiae. Genetics 213(1):229-249 PMID:31292210
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Beaupere C, et al. (2018) Genetic screen identifies adaptive aneuploidy as a key mediator of ER stress resistance in yeast. Proc Natl Acad Sci U S A 115(38):9586-9591 PMID:30185560
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Beaupere C, et al. (2017) CAN1 Arginine Permease Deficiency Extends Yeast Replicative Lifespan via Translational Activation of Stress Response Genes. Cell Rep 18(8):1884-1892 PMID:28228255
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Chen KL, et al. (2017) Microfluidic technologies for yeast replicative lifespan studies. Mech Ageing Dev 161(Pt B):262-269 PMID:27015709
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kapahi P, et al. (2017) Dietary restriction and lifespan: Lessons from invertebrate models. Ageing Res Rev 39:3-14 PMID:28007498
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lee MB, et al. (2017) A system to identify inhibitors of mTOR signaling using high-resolution growth analysis in Saccharomyces cerevisiae. Geroscience 39(4):419-428 PMID:28707282
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sunshine AB, et al. (2016) Aneuploidy shortens replicative lifespan in Saccharomyces cerevisiae. Aging Cell 15(2):317-24 PMID:26762766
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bitto A, et al. (2015) Biochemical Genetic Pathways that Modulate Aging in Multiple Species. Cold Spring Harb Perspect Med 5(11) PMID:26525455
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cui HJ, et al. (2015) PMT1 deficiency enhances basal UPR activity and extends replicative lifespan of Saccharomyces cerevisiae. Age (Dordr) 37(3):9788 PMID:25936926
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Jafari G, et al. (2015) Tether mutations that restore function and suppress pleiotropic phenotypes of the C. elegans isp-1(qm150) Rieske iron-sulfur protein. Proc Natl Acad Sci U S A 112(45):E6148-57 PMID:26504246
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kaya A, et al. (2015) Defining Molecular Basis for Longevity Traits in Natural Yeast Isolates. NPJ Aging Mech Dis 1:15001- PMID:27030810
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • McCormick MA, et al. (2015) A Comprehensive Analysis of Replicative Lifespan in 4,698 Single-Gene Deletion Strains Uncovers Conserved Mechanisms of Aging. Cell Metab 22(5):895-906 PMID:26456335
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Pitt JN and Kaeberlein M (2015) Why is aging conserved and what can we do about it? PLoS Biol 13(4):e1002131 PMID:25923592
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sen P, et al. (2015) H3K36 methylation promotes longevity by enhancing transcriptional fidelity. Genes Dev 29(13):1362-76 PMID:26159996
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Vermulst M, et al. (2015) Transcription errors induce proteotoxic stress and shorten cellular lifespan. Nat Commun 6:8065 PMID:26304740
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yang J, et al. (2015) Systematic analysis of asymmetric partitioning of yeast proteome between mother and daughter cells reveals "aging factors" and mechanism of lifespan asymmetry. Proc Natl Acad Sci U S A 112(38):11977-82 PMID:26351681
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Dang W, et al. (2014) Inactivation of yeast Isw2 chromatin remodeling enzyme mimics longevity effect of calorie restriction via induction of genotoxic stress response. Cell Metab 19(6):952-66 PMID:24814484
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • He C, et al. (2014) Enhanced longevity by ibuprofen, conserved in multiple species, occurs in yeast through inhibition of tryptophan import. PLoS Genet 10(12):e1004860 PMID:25521617
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Labunskyy VM, et al. (2014) Lifespan extension conferred by endoplasmic reticulum secretory pathway deficiency requires induction of the unfolded protein response. PLoS Genet 10(1):e1004019 PMID:24391512
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • McCormick MA, et al. (2014) The SAGA histone deubiquitinase module controls yeast replicative lifespan via Sir2 interaction. Cell Rep 8(2):477-86 PMID:25043177
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sutphin GL, et al. (2014) Replicative life span analysis in budding yeast. Methods Mol Biol 1205:341-57 PMID:25213254
    • SGD Paper
    • DOI full text
    • PubMed
  • Wasko BM and Kaeberlein M (2014) Yeast replicative aging: a paradigm for defining conserved longevity interventions. FEMS Yeast Res 14(1):148-59 PMID:24119093
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zhao W, et al. (2014) Nar1 deficiency results in shortened lifespan and sensitivity to paraquat that is rescued by increased expression of mitochondrial superoxide dismutase. Mech Ageing Dev 138:53-8 PMID:24486555
    • SGD Paper
    • DOI full text
    • PubMed
  • Delaney JR, et al. (2013) End-of-life cell cycle arrest contributes to stochasticity of yeast replicative aging. FEMS Yeast Res 13(3):267-76 PMID:23336757
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Delaney JR, et al. (2013) Dietary restriction and mitochondrial function link replicative and chronological aging in Saccharomyces cerevisiae. Exp Gerontol 48(10):1006-13 PMID:23235143
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Delaney JR, et al. (2013) Stress profiling of longevity mutants identifies Afg3 as a mitochondrial determinant of cytoplasmic mRNA translation and aging. Aging Cell 12(1):156-66 PMID:23167605
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kaeberlein M (2013) Longevity and aging. F1000Prime Rep 5:5 PMID:23513177
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kwan EX, et al. (2013) A natural polymorphism in rDNA replication origins links origin activation with calorie restriction and lifespan. PLoS Genet 9(3):e1003329 PMID:23505383
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • O'Leary MN, et al. (2013) The ribosomal protein Rpl22 controls ribosome composition by directly repressing expression of its own paralog, Rpl22l1. PLoS Genet 9(8):e1003708 PMID:23990801
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Schleit J, et al. (2013) Molecular mechanisms underlying genotype-dependent responses to dietary restriction. Aging Cell 12(6):1050-61 PMID:23837470
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wasko BM, et al. (2013) Buffering the pH of the culture medium does not extend yeast replicative lifespan. F1000Res 2:216 PMID:24555104
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kaeberlein M (2012) Hypertrophy and senescence factors in yeast aging. A reply to Bilinski et al. FEMS Yeast Res 12(3):269-70 PMID:22405426
    • SGD Paper
    • DOI full text
    • PubMed
  • Longo VD, et al. (2012) Replicative and chronological aging in Saccharomyces cerevisiae. Cell Metab 16(1):18-31 PMID:22768836
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Murakami C, et al. (2012) pH neutralization protects against reduction in replicative lifespan following chronological aging in yeast. Cell Cycle 11(16):3087-96 PMID:22871733
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Schleit J, et al. (2012) Yeast as a model to understand the interaction between genotype and the response to calorie restriction. FEBS Lett 586(18):2868-73 PMID:22828279
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Steffen KK, et al. (2012) Ribosome deficiency protects against ER stress in Saccharomyces cerevisiae. Genetics 191(1):107-18 PMID:22377630
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sutphin GL, et al. (2012) Genome-wide analysis of yeast aging. Subcell Biochem 57:251-89 PMID:22094426
    • SGD Paper
    • DOI full text
    • PubMed
  • Burnett C, et al. (2011) Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature 477(7365):482-5 PMID:21938067
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Burtner CR, et al. (2011) A genomic analysis of chronological longevity factors in budding yeast. Cell Cycle 10(9):1385-96 PMID:21447998
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Delaney JR, et al. (2011) Sir2 deletion prevents lifespan extension in 32 long-lived mutants. Aging Cell 10(6):1089-91 PMID:21902802
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Delaney JR, et al. (2011) Quantitative evidence for early life fitness defects from 32 longevity-associated alleles in yeast. Cell Cycle 10(1):156-65 PMID:21191185
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kruegel U, et al. (2011) Elevated proteasome capacity extends replicative lifespan in Saccharomyces cerevisiae. PLoS Genet 7(9):e1002253 PMID:21931558
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Murakami CJ, et al. (2011) Composition and acidification of the culture medium influences chronological aging similarly in vineyard and laboratory yeast. PLoS One 6(9):e24530 PMID:21949725
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kaeberlein M (2010) Lessons on longevity from budding yeast. Nature 464(7288):513-9 PMID:20336133
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kaeberlein M (2010) Resveratrol and rapamycin: are they anti-aging drugs? Bioessays 32(2):96-9 PMID:20091754
    • SGD Paper
    • DOI full text
    • PubMed
  • Mehta R, et al. (2010) Regulation of mRNA translation as a conserved mechanism of longevity control. Adv Exp Med Biol 694:14-29 PMID:20886753
    • SGD Paper
    • DOI full text
    • PubMed
  • Olsen B, et al. (2010) YODA: software to facilitate high-throughput analysis of chronological life span, growth rate, and survival in budding yeast. BMC Bioinformatics 11:141 PMID:20298554
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Burtner CR, et al. (2009) A molecular mechanism of chronological aging in yeast. Cell Cycle 8(8):1256-70 PMID:19305133
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Burtner CR, et al. (2009) A genomic approach to yeast chronological aging. Methods Mol Biol 548:101-14 PMID:19521821
    • SGD Paper
    • DOI full text
    • PubMed
  • Dang W, et al. (2009) Histone H4 lysine 16 acetylation regulates cellular lifespan. Nature 459(7248):802-7 PMID:19516333
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Murakami C and Kaeberlein M (2009) Quantifying yeast chronological life span by outgrowth of aged cells. J Vis Exp PMID:19421136
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Steffen KK, et al. (2009) Measuring replicative life span in the budding yeast. J Vis Exp PMID:19556967
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kaeberlein M (2008) Cell biology: A molecular age barrier. Nature 454(7205):709-10 PMID:18685697
    • SGD Paper
    • DOI full text
    • PubMed
  • Managbanag JR, et al. (2008) Shortest-path network analysis is a useful approach toward identifying genetic determinants of longevity. PLoS One 3(11):e3802 PMID:19030232
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Murakami CJ, et al. (2008) A method for high-throughput quantitative analysis of yeast chronological life span. J Gerontol A Biol Sci Med Sci 63(2):113-21 PMID:18314444
    • SGD Paper
    • DOI full text
    • PubMed
  • Schmidlin T, et al. (2008) Single-gene deletions that restore mating competence to diploid yeast. FEMS Yeast Res 8(2):276-86 PMID:17995956
    • SGD Paper
    • DOI full text
    • PubMed
  • Smith ED, et al. (2008) Quantitative evidence for conserved longevity pathways between divergent eukaryotic species. Genome Res 18(4):564-70 PMID:18340043
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Steffen KK, et al. (2008) Yeast life span extension by depletion of 60s ribosomal subunits is mediated by Gcn4. Cell 133(2):292-302 PMID:18423200
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Steinkraus KA, et al. (2008) Replicative aging in yeast: the means to the end. Annu Rev Cell Dev Biol 24:29-54 PMID:18616424
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kaeberlein M (2007) Longevity genomics across species. Curr Genomics 8(2):73-8 PMID:18660849
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kaeberlein M and Kennedy BK (2007) Protein translation, 2007. Aging Cell 6(6):731-4 PMID:17941970
    • SGD Paper
    • DOI full text
    • PubMed
  • Kaeberlein M and Kennedy BK (2007) Does resveratrol activate yeast Sir2 in vivo? Aging Cell 6(4):415-6 PMID:17635418
    • SGD Paper
    • DOI full text
    • PubMed
  • Kaeberlein M and Powers RW (2007) Sir2 and calorie restriction in yeast: a skeptical perspective. Ageing Res Rev 6(2):128-40 PMID:17512264
    • SGD Paper
    • DOI full text
    • PubMed
  • Kaeberlein M, et al. (2007) Recent developments in yeast aging. PLoS Genet 3(5):e84 PMID:17530929
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lockshon D, et al. (2007) The sensitivity of yeast mutants to oleic acid implicates the peroxisome and other processes in membrane function. Genetics 175(1):77-91 PMID:17151231
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Smith ED, et al. (2007) Genome-wide identification of conserved longevity genes in yeast and worms. Mech Ageing Dev 128(1):106-11 PMID:17126379
    • SGD Paper
    • DOI full text
    • PubMed
  • Kaeberlein M, et al. (2006) Comment on "HST2 mediates SIR2-independent life-span extension by calorie restriction". Science 312(5778):1312; author reply 1312 PMID:16741098
    • SGD Paper
    • DOI full text
    • PubMed
  • Kaeberlein M, et al. (2006) Author's Reply. PLoS Genet 2(3):e34
    • SGD Paper
  • Powers RW, et al. (2006) Extension of chronological life span in yeast by decreased TOR pathway signaling. Genes Dev 20(2):174-84 PMID:16418483
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tsuchiya M, et al. (2006) Sirtuin-independent effects of nicotinamide on lifespan extension from calorie restriction in yeast. Aging Cell 5(6):505-14 PMID:17129213
    • SGD Paper
    • DOI full text
    • PubMed
  • Kaeberlein M and Kennedy BK (2005) Large-scale identification in yeast of conserved ageing genes. Mech Ageing Dev 126(1):17-21 PMID:15610758
    • SGD Paper
    • DOI full text
    • PubMed
  • Kaeberlein M, et al. (2005) Increased life span due to calorie restriction in respiratory-deficient yeast. PLoS Genet 1(5):e69 PMID:16311627
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kaeberlein M, et al. (2005) Genes determining yeast replicative life span in a long-lived genetic background. Mech Ageing Dev 126(4):491-504 PMID:15722108
    • SGD Paper
    • DOI full text
    • PubMed
  • Kaeberlein M, et al. (2005) Substrate-specific activation of sirtuins by resveratrol. J Biol Chem 280(17):17038-45 PMID:15684413
    • SGD Paper
    • DOI full text
    • PubMed
  • Kaeberlein M, et al. (2005) Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science 310(5751):1193-6 PMID:16293764
    • SGD Paper
    • DOI full text
    • PubMed
    • Reference supplement
  • Kennedy BK, et al. (2005) The enigmatic role of Sir2 in aging. Cell 123(4):548-50 PMID:16286003
    • SGD Paper
    • DOI full text
    • PubMed
  • Kaeberlein M, et al. (2004) Sir2-independent life span extension by calorie restriction in yeast. PLoS Biol 2(9):E296 PMID:15328540
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kaeberlein M, et al. (2004) Saccharomyces cerevisiae SSD1-V confers longevity by a Sir2p-independent mechanism. Genetics 166(4):1661-72 PMID:15126388
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Armstrong CM, et al. (2002) Mutations in Saccharomyces cerevisiae gene SIR2 can have differential effects on in vivo silencing phenotypes and in vitro histone deacetylation activity. Mol Biol Cell 13(4):1427-38 PMID:11950950
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kaeberlein M and Guarente L (2002) Saccharomyces cerevisiae MPT5 and SSD1 function in parallel pathways to promote cell wall integrity. Genetics 160(1):83-95 PMID:11805047
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kaeberlein M, et al. (2002) High osmolarity extends life span in Saccharomyces cerevisiae by a mechanism related to calorie restriction. Mol Cell Biol 22(22):8056-66 PMID:12391171
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
    • Reference supplement
  • Lin SJ, et al. (2002) Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature 418(6895):344-8 PMID:12124627
    • SGD Paper
    • DOI full text
    • PubMed
    • Reference supplement
    • Reference supplement
  • Kaeberlein M, et al. (2001) Using yeast to discover the fountain of youth. Sci Aging Knowledge Environ 2001(1):pe1 PMID:14602950
    • SGD Paper
    • DOI full text
    • PubMed
  • McVey M, et al. (2001) The short life span of Saccharomyces cerevisiae sgs1 and srs2 mutants is a composite of normal aging processes and mitotic arrest due to defective recombination. Genetics 157(4):1531-42 PMID:11290710
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Imai S, et al. (2000) Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403(6771):795-800 PMID:10693811
    • SGD Paper
    • DOI full text
    • PubMed
  • Defossez PA, et al. (1999) Elimination of replication block protein Fob1 extends the life span of yeast mother cells. Mol Cell 3(4):447-55 PMID:10230397
    • SGD Paper
    • DOI full text
    • PubMed
  • Kaeberlein M, et al. (1999) The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 13(19):2570-80 PMID:10521401
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top