AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Izawa S
  • References

Author: Izawa S


References 80 references


No citations for this author.

Download References (.nbib)

  • Horie F, et al. (2025) Yeast Hsp78 plays an essential role in adapting to severe ethanol stress via mild ethanol stress pretreatment in mitochondrial protein quality control. Biochim Biophys Acta Gen Subj 1869(6):130804 PMID:40187374
    • SGD Paper
    • DOI full text
    • PubMed
  • Ando R, et al. (2023) Contribution of the yeast bi-chaperone system in the restoration of the RNA helicase Ded1 and translational activity under severe ethanol stress. J Biol Chem 299(12):105472 PMID:37979914
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kamada Y, et al. (2023) Yeast Tor complex 1 phosphorylates eIF4E-binding protein, Caf20. Genes Cells 28(11):789-799 PMID:37700444
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Nguyet VTA, et al. (2023) Severe ethanol stress inhibits yeast proteasome activity at moderate temperatures but not at low temperatures. Genes Cells 28(10):736-745 PMID:37550872
    • SGD Paper
    • DOI full text
    • PubMed
  • Furutani N and Izawa S (2022) Adaptability of wine yeast to ethanol-induced protein denaturation. FEMS Yeast Res 22(1) PMID:36385376
    • SGD Paper
    • DOI full text
    • PubMed
  • Ishikawa Y, et al. (2022) Severe ethanol stress induces the preferential synthesis of mitochondrial disaggregase Hsp78 and formation of DUMPs in Saccharomyces cerevisiae. Biochim Biophys Acta Gen Subj 1866(7):130147 PMID:35417764
    • SGD Paper
    • DOI full text
    • PubMed
  • Nguyet VTA, et al. (2022) Acquired resistance to severe ethanol stress-induced inhibition of proteasomal proteolysis in Saccharomyces cerevisiae. Biochim Biophys Acta Gen Subj 1866(12):130241 PMID:36075516
    • SGD Paper
    • DOI full text
    • PubMed
  • Yoshida M, et al. (2022) Wine Yeast Cells Acquire Resistance to Severe Ethanol Stress and Suppress Insoluble Protein Accumulation during Alcoholic Fermentation. Microbiol Spectr 10(5):e0090122 PMID:36040149
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yoshida M, et al. (2021) Acquired Resistance to Severe Ethanol Stress in Saccharomyces cerevisiae Protein Quality Control. Appl Environ Microbiol 87(6) PMID:33361368
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Uemura S, et al. (2020) Amino acid homeostatic control by TORC1 in Saccharomyces cerevisiae under high hydrostatic pressure. J Cell Sci 133(17) PMID:32801125
    • SGD Paper
    • DOI full text
    • PubMed
  • Kato S, et al. (2019) Btn2 is involved in the clearance of denatured proteins caused by severe ethanol stress in Saccharomyces cerevisiae. FEMS Yeast Res 19(8) PMID:31711140
    • SGD Paper
    • DOI full text
    • PubMed
  • Watanabe D, et al. (2019) Nutrient Signaling via the TORC1-Greatwall-PP2AB55δ Pathway Is Responsible for the High Initial Rates of Alcoholic Fermentation in Sake Yeast Strains of Saccharomyces cerevisiae. Appl Environ Microbiol 85(1) PMID:30341081
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yoshimoto N, et al. (2019) Xylene causes oxidative stress and pronounced translation repression in Saccharomyces cerevisiae. J Biosci Bioeng 128(6):697-703 PMID:31235415
    • SGD Paper
    • DOI full text
    • PubMed
  • Homoto S and Izawa S (2018) Persistent actin depolarization caused by ethanol induces the formation of multiple small cortical septin rings in yeast. J Cell Sci 131(15) PMID:29991513
    • SGD Paper
    • DOI full text
    • PubMed
  • Itooka K, et al. (2018) Cold atmospheric pressure plasma causes protein denaturation and endoplasmic reticulum stress in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 102(5):2279-2288 PMID:29356871
    • SGD Paper
    • DOI full text
    • PubMed
  • Kato S, et al. (2018) Protein synthesis of Btn2 under pronounced translation repression during the process of alcoholic fermentation and wine-making in yeast. Appl Microbiol Biotechnol 102(22):9669-9677 PMID:30141081
    • SGD Paper
    • DOI full text
    • PubMed
  • Nguyen TTM, et al. (2018) The VFH1 (YLL056C) promoter is vanillin-inducible and enables mRNA translation despite pronounced translation repression caused by severe vanillin stress in Saccharomyces cerevisiae. Yeast 35(7):465-475 PMID:29575020
    • SGD Paper
    • DOI full text
    • PubMed
  • Ishida Y, et al. (2017) The yeast ADH7 promoter enables gene expression under pronounced translation repression caused by the combined stress of vanillin, furfural, and 5-hydroxymethylfurfural. J Biotechnol 252:65-72 PMID:28458045
    • SGD Paper
    • DOI full text
    • PubMed
  • Nakamura T, et al. (2017) Trans 18-carbon monoenoic fatty acid has distinct effects from its isomeric cis fatty acid on lipotoxicity and gene expression in Saccharomyces cerevisiae. J Biosci Bioeng 123(1):33-38 PMID:27484790
    • SGD Paper
    • DOI full text
    • PubMed
  • Ishida Y, et al. (2016) Prioritized Expression of BDH2 under Bulk Translational Repression and Its Contribution to Tolerance to Severe Vanillin Stress in Saccharomyces cerevisiae. Front Microbiol 7:1059 PMID:27458450
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ito Y, et al. (2016) Enhancement of protein production via the strong DIT1 terminator and two RNA-binding proteins in Saccharomyces cerevisiae. Sci Rep 6:36997 PMID:27845367
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Itooka K, et al. (2016) Fluorescence microscopic analysis of antifungal effects of cold atmospheric pressure plasma in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 100(21):9295-9304 PMID:27544759
    • SGD Paper
    • DOI full text
    • PubMed
  • Yamauchi Y and Izawa S (2016) Prioritized Expression of BTN2 of Saccharomyces cerevisiae under Pronounced Translation Repression Induced by Severe Ethanol Stress. Front Microbiol 7:1319 PMID:27602028
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Nguyen TT, et al. (2015) The ADH7 Promoter of Saccharomyces cerevisiae is Vanillin-Inducible and Enables mRNA Translation Under Severe Vanillin Stress. Front Microbiol 6:1390 PMID:26696995
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Takabatake A, et al. (2015) Plasma membrane proteins Yro2 and Mrh1 are required for acetic acid tolerance in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 99(6):2805-14 PMID:25503505
    • SGD Paper
    • DOI full text
    • PubMed
  • Kubo R, et al. (2014) Isolation of lactic acid-tolerant Saccharomyces cerevisiae from Cameroonian alcoholic beverage. J Biosci Bioeng 118(6):657-60 PMID:24910259
    • SGD Paper
    • DOI full text
    • PubMed
  • Nguyen TT, et al. (2014) Vanillin causes the activation of Yap1 and mitochondrial fragmentation in Saccharomyces cerevisiae. J Biosci Bioeng 117(1):33-8 PMID:23850265
    • SGD Paper
    • DOI full text
    • PubMed
  • Nguyen TT, et al. (2014) Importance of glucose-6-phosphate dehydrogenase (G6PDH) for vanillin tolerance in Saccharomyces cerevisiae. J Biosci Bioeng 118(3):263-9 PMID:24725964
    • SGD Paper
    • DOI full text
    • PubMed
  • Iwaki A, et al. (2013) Vanillin inhibits translation and induces messenger ribonucleoprotein (mRNP) granule formation in saccharomyces cerevisiae: application and validation of high-content, image-based profiling. PLoS One 8(4):e61748 PMID:23637899
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Iwaki A, et al. (2013) Biomass conversion inhibitors furfural and 5-hydroxymethylfurfural induce formation of messenger RNP granules and attenuate translation activity in Saccharomyces cerevisiae. Appl Environ Microbiol 79(5):1661-7 PMID:23275506
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yamamoto Y and Izawa S (2013) Adaptive response in stress granule formation and bulk translational repression upon a combined stress of mild heat shock and mild ethanol stress in yeast. Genes Cells 18(11):974-84 PMID:24033457
    • SGD Paper
    • DOI full text
    • PubMed
  • Iwaki A and Izawa S (2012) Acidic stress induces the formation of P-bodies, but not stress granules, with mild attenuation of bulk translation in Saccharomyces cerevisiae. Biochem J 446(2):225-33 PMID:22686455
    • SGD Paper
    • DOI full text
    • PubMed
  • Kamo K, et al. (2012) Temperature dependent N-glycosylation of plasma membrane heat shock protein Hsp30p in Saccharomyces cerevisiae. Biochem Biophys Res Commun 420(1):119-23 PMID:22405770
    • SGD Paper
    • DOI full text
    • PubMed
  • Yoshida A, et al. (2012) Reduction of glucose uptake through inhibition of hexose transporters and enhancement of their endocytosis by methylglyoxal in Saccharomyces cerevisiae. J Biol Chem 287(1):701-711 PMID:22094464
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ikeda K, et al. (2011) Modification of yeast characteristics by soy peptides: cultivation with soy peptides represses the formation of lipid bodies. Appl Microbiol Biotechnol 89(6):1971-7 PMID:21103987
    • SGD Paper
    • DOI full text
    • PubMed
  • Kato K, et al. (2011) Severe ethanol stress induces assembly of stress granules in Saccharomyces cerevisiae. Yeast 28(5):339-47 PMID:21341306
    • SGD Paper
    • DOI full text
    • PubMed
  • Ukai Y, et al. (2011) Glutathione peroxidase 2 in Saccharomyces cerevisiae is distributed in mitochondria and involved in sporulation. Biochem Biophys Res Commun 411(3):580-5 PMID:21763276
    • SGD Paper
    • DOI full text
    • PubMed
  • Izawa S (2010) Ethanol stress response in the mRNA flux of Saccharomyces cerevisiae. Biosci Biotechnol Biochem 74(1):7-12 PMID:20057118
    • SGD Paper
    • DOI full text
    • PubMed
  • Izawa S, et al. (2010) Vacuolar morphology of Saccharomyces cerevisiae during the process of wine making and Japanese sake brewing. Appl Microbiol Biotechnol 88(1):277-82 PMID:20625715
    • SGD Paper
    • DOI full text
    • PubMed
  • Nomura W, et al. (2010) Methylglyoxal activates Gcn2 to phosphorylate eIF2alpha independently of the TOR pathway in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 86(6):1887-94 PMID:20077113
    • SGD Paper
    • DOI full text
    • PubMed
  • Ohdate T, et al. (2010) Regulatory mechanism for expression of GPX1 in response to glucose starvation and Ca in Saccharomyces cerevisiae: involvement of Snf1 and Ras/cAMP pathway in Ca signaling. Genes Cells 15(1):59-75 PMID:20002498
    • SGD Paper
    • DOI full text
    • PubMed
  • Takatsume Y, et al. (2010) Calcineurin/Crz1 destabilizes Msn2 and Msn4 in the nucleus in response to Ca(2+) in Saccharomyces cerevisiae. Biochem J 427(2):275-87 PMID:20121702
    • SGD Paper
    • DOI full text
    • PubMed
  • Izawa S and Inoue Y (2009) Post-transcriptional regulation of gene expression in yeast under ethanol stress. Biotechnol Appl Biochem 53(Pt 2):93-9 PMID:19397495
    • SGD Paper
    • DOI full text
    • PubMed
  • Izawa S, et al. (2008) Heat shock and ethanol stress provoke distinctly different responses in 3'-processing and nuclear export of HSP mRNA in Saccharomyces cerevisiae. Biochem J 414(1):111-9 PMID:18442359
    • SGD Paper
    • DOI full text
    • PubMed
  • Nomura W, et al. (2008) Role of Gcn4 for adaptation to methylglyoxal in Saccharomyces cerevisiae: methylglyoxal attenuates protein synthesis through phosphorylation of eIF2alpha. Biochem Biophys Res Commun 376(4):738-42 PMID:18812164
    • SGD Paper
    • DOI full text
    • PubMed
  • Inoue Y, et al. (2007) Efficient extraction of thioreodoxin from Saccharomyces cerevisiae by ethanol. Appl Environ Microbiol 73(5):1672-5 PMID:17209065
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Izawa S, et al. (2007) Formation of cytoplasmic P-bodies in sake yeast during Japanese sake brewing and wine making. Biosci Biotechnol Biochem 71(11):2800-7 PMID:17986786
    • SGD Paper
    • DOI full text
    • PubMed
  • Izawa S, et al. (2007) Improvement of tolerance to freeze-thaw stress of baker's yeast by cultivation with soy peptides. Appl Microbiol Biotechnol 75(3):533-7 PMID:17505771
    • SGD Paper
    • DOI full text
    • PubMed
  • Izawa S, et al. (2007) Msn2p/Msn4p-activation is essential for the recovery from freezing stress in yeast. Biochem Biophys Res Commun 352(3):750-5 PMID:17150183
    • SGD Paper
    • DOI full text
    • PubMed
  • Maeta K, et al. (2007) Green tea polyphenols function as prooxidants to activate oxidative-stress-responsive transcription factors in yeasts. Appl Environ Microbiol 73(2):572-80 PMID:17122395
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Takeuchi Y, et al. (2007) Release of thioredoxin from Saccharomyces cerevisiae with environmental stimuli: solubilization of thioredoxin with ethanol. Appl Microbiol Biotechnol 75(6):1393-9 PMID:17390130
    • SGD Paper
    • DOI full text
    • PubMed
  • Izawa S, et al. (2006) Asr1, an alcohol-responsive factor of Saccharomyces cerevisiae, is dispensable for alcoholic fermentation. Appl Microbiol Biotechnol 72(3):560-5 PMID:16391921
    • SGD Paper
    • DOI full text
    • PubMed
  • Izawa S, et al. (2005) Characterization of the export of bulk poly(A)+ mRNA in Saccharomyces cerevisiae during the wine-making process. Appl Environ Microbiol 71(4):2179-82 PMID:15812055
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Izawa S, et al. (2005) Characterization of Rat8 localization and mRNA export in Saccharomyces cerevisiae during the brewing of Japanese sake. Appl Microbiol Biotechnol 69(1):86-91 PMID:15803312
    • SGD Paper
    • DOI full text
    • PubMed
  • Maeta K, et al. (2005) Diagnosis of cell death induced by methylglyoxal, a metabolite derived from glycolysis, in Saccharomyces cerevisiae. FEMS Microbiol Lett 243(1):87-92 PMID:15668005
    • SGD Paper
    • DOI full text
    • PubMed
  • Maeta K, et al. (2005) Methylglyoxal, a metabolite derived from glycolysis, functions as a signal initiator of the high osmolarity glycerol-mitogen-activated protein kinase cascade and calcineurin/Crz1-mediated pathway in Saccharomyces cerevisiae. J Biol Chem 280(1):253-60 PMID:15520007
    • SGD Paper
    • DOI full text
    • PubMed
  • Takatsume Y, et al. (2005) Enrichment of yeast thioredoxin by green tea extract through activation of Yap1 transcription factor in Saccharomyces cerevisiae. J Agric Food Chem 53(2):332-7 PMID:15656669
    • SGD Paper
    • DOI full text
    • PubMed
  • Tanaka T, et al. (2005) GPX2, encoding a phospholipid hydroperoxide glutathione peroxidase homologue, codes for an atypical 2-Cys peroxiredoxin in Saccharomyces cerevisiae. J Biol Chem 280(51):42078-87 PMID:16251189
    • SGD Paper
    • DOI full text
    • PubMed
  • Izawa S and Inoue Y (2004) A screening system for antioxidants using thioredoxin-deficient yeast: discovery of thermostable antioxidant activity from Agaricus blazei Murill. Appl Microbiol Biotechnol 64(4):537-42 PMID:14593506
    • SGD Paper
    • DOI full text
    • PubMed
  • Izawa S, et al. (2004) Deficiency in the glycerol channel Fps1p confers increased freeze tolerance to yeast cells: application of the fps1delta mutant to frozen dough technology. Appl Microbiol Biotechnol 66(3):303-5 PMID:15278313
    • SGD Paper
    • DOI full text
    • PubMed
  • Izawa S, et al. (2004) Intracellular glycerol influences resistance to freeze stress in Saccharomyces cerevisiae: analysis of a quadruple mutant in glycerol dehydrogenase genes and glycerol-enriched cells. Appl Microbiol Biotechnol 66(1):108-14 PMID:15127164
    • SGD Paper
    • DOI full text
    • PubMed
  • Izawa S, et al. (2004) Gle2p is essential to induce adaptation of the export of bulk poly(A)+ mRNA to heat shock in Saccharomyces cerevisiae. J Biol Chem 279(34):35469-78 PMID:15210706
    • SGD Paper
    • DOI full text
    • PubMed
  • Izawa S, et al. (2004) Nuclear thioredoxin peroxidase Dot5 in Saccharomyces cerevisiae: roles in oxidative stress response and disruption of telomeric silencing. Appl Microbiol Biotechnol 64(1):120-4 PMID:12925864
    • SGD Paper
    • DOI full text
    • PubMed
  • Maeta K, et al. (2004) Activity of the Yap1 transcription factor in Saccharomyces cerevisiae is modulated by methylglyoxal, a metabolite derived from glycolysis. Mol Cell Biol 24(19):8753-64 PMID:15367692
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Takatsume Y, et al. (2004) Identification of thermostable glyoxalase I in the fission yeast Schizosaccharomyces pombe. Arch Microbiol 181(5):371-7 PMID:15042280
    • SGD Paper
    • DOI full text
    • PubMed
  • Takemura R, et al. (2004) Stress response in yeast mRNA export factor: reversible changes in Rat8p localization are caused by ethanol stress but not heat shock. J Cell Sci 117(Pt 18):4189-97 PMID:15280434
    • SGD Paper
    • DOI full text
    • PubMed
  • Tsuzi D, et al. (2004) Distinct regulatory mechanism of yeast GPX2 encoding phospholipid hydroperoxide glutathione peroxidase by oxidative stress and a calcineurin/Crz1-mediated Ca2+ signaling pathway. FEBS Lett 569(1-3):301-6 PMID:15225652
    • SGD Paper
    • DOI full text
    • PubMed
  • Tsuzi D, et al. (2004) Regulation of the yeast phospholipid hydroperoxide glutathione peroxidase GPX2 by oxidative stress is mediated by Yap1 and Skn7. FEBS Lett 565(1-3):148-54 PMID:15135069
    • SGD Paper
    • DOI full text
    • PubMed
  • Kuge S, et al. (2001) Regulation of the yeast Yap1p nuclear export signal is mediated by redox signal-induced reversible disulfide bond formation. Mol Cell Biol 21(18):6139-50 PMID:11509657
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Miyabe S, et al. (2001) The Zrc1 is involved in zinc transport system between vacuole and cytosol in Saccharomyces cerevisiae. Biochem Biophys Res Commun 282(1):79-83 PMID:11263974
    • SGD Paper
    • DOI full text
    • PubMed
  • Miyabe S, et al. (2000) Expression of ZRC1 coding for suppressor of zinc toxicity is induced by zinc-starvation stress in Zap1-dependent fashion in Saccharomyces cerevisiae. Biochem Biophys Res Commun 276(3):879-84 PMID:11027563
    • SGD Paper
    • DOI full text
    • PubMed
  • Sugiyama K, et al. (2000) The Yap1p-dependent induction of glutathione synthesis in heat shock response of Saccharomyces cerevisiae. J Biol Chem 275(20):15535-40 PMID:10809786
    • SGD Paper
    • DOI full text
    • PubMed
  • Sugiyama K, et al. (2000) Role of glutathione in heat-shock-induced cell death of Saccharomyces cerevisiae. Biochem J 352 Pt 1(Pt 1):71-8 PMID:11062059
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tsujimoto Y, et al. (2000) Cooperative regulation of DOG2, encoding 2-deoxyglucose-6-phosphate phosphatase, by Snf1 kinase and the high-osmolarity glycerol-mitogen-activated protein kinase cascade in stress responses of Saccharomyces cerevisiae. J Bacteriol 182(18):5121-6 PMID:10960096
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Inoue Y, et al. (1999) Genetic analysis of glutathione peroxidase in oxidative stress response of Saccharomyces cerevisiae. J Biol Chem 274(38):27002-9 PMID:10480913
    • SGD Paper
    • DOI full text
    • PubMed
  • Izawa S, et al. (1999) Thioredoxin deficiency causes the constitutive activation of Yap1, an AP-1-like transcription factor in Saccharomyces cerevisiae. J Biol Chem 274(40):28459-65 PMID:10497208
    • SGD Paper
    • DOI full text
    • PubMed
  • Inoue Y, et al. (1998) Molecular identification of glutathione synthetase (GSH2) gene from Saccharomyces cerevisiae. Biochim Biophys Acta 1395(3):315-20 PMID:9512666
    • SGD Paper
    • DOI full text
    • PubMed
  • Izawa S, et al. (1998) Importance of glucose-6-phosphate dehydrogenase in the adaptive response to hydrogen peroxide in Saccharomyces cerevisiae. Biochem J 330 ( Pt 2)(Pt 2):811-7 PMID:9480895
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kobayashi S, et al. (1996) Correlation of the OSR/ZRCI gene product and the intracellular glutathione levels in Saccharomyces cerevisiae. Biotechnol Appl Biochem 23(1):3-6 PMID:8867889
    • SGD Paper
    • PubMed
  • Izawa S, et al. (1995) Oxidative stress response in yeast: effect of glutathione on adaptation to hydrogen peroxide stress in Saccharomyces cerevisiae. FEBS Lett 368(1):73-6 PMID:7615092
    • SGD Paper
    • DOI full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top