Horie F, et al. (2025) Yeast Hsp78 plays an essential role in adapting to severe ethanol stress via mild ethanol stress pretreatment in mitochondrial protein quality control. Biochim Biophys Acta Gen Subj 1869(6):130804 PMID:40187374
Ando R, et al. (2023) Contribution of the yeast bi-chaperone system in the restoration of the RNA helicase Ded1 and translational activity under severe ethanol stress. J Biol Chem 299(12):105472 PMID:37979914
Nguyet VTA, et al. (2023) Severe ethanol stress inhibits yeast proteasome activity at moderate temperatures but not at low temperatures. Genes Cells 28(10):736-745 PMID:37550872
Ishikawa Y, et al. (2022) Severe ethanol stress induces the preferential synthesis of mitochondrial disaggregase Hsp78 and formation of DUMPs in Saccharomyces cerevisiae. Biochim Biophys Acta Gen Subj 1866(7):130147 PMID:35417764
Nguyet VTA, et al. (2022) Acquired resistance to severe ethanol stress-induced inhibition of proteasomal proteolysis in Saccharomyces cerevisiae. Biochim Biophys Acta Gen Subj 1866(12):130241 PMID:36075516
Yoshida M, et al. (2022) Wine Yeast Cells Acquire Resistance to Severe Ethanol Stress and Suppress Insoluble Protein Accumulation during Alcoholic Fermentation. Microbiol Spectr 10(5):e0090122 PMID:36040149
Yoshida M, et al. (2021) Acquired Resistance to Severe Ethanol Stress in Saccharomyces cerevisiae Protein Quality Control. Appl Environ Microbiol 87(6) PMID:33361368
Uemura S, et al. (2020) Amino acid homeostatic control by TORC1 in Saccharomyces cerevisiae under high hydrostatic pressure. J Cell Sci 133(17) PMID:32801125
Kato S, et al. (2019) Btn2 is involved in the clearance of denatured proteins caused by severe ethanol stress in Saccharomyces cerevisiae. FEMS Yeast Res 19(8) PMID:31711140
Watanabe D, et al. (2019) Nutrient Signaling via the TORC1-Greatwall-PP2AB55δ Pathway Is Responsible for the High Initial Rates of Alcoholic Fermentation in Sake Yeast Strains of Saccharomyces cerevisiae. Appl Environ Microbiol 85(1) PMID:30341081
Homoto S and Izawa S (2018) Persistent actin depolarization caused by ethanol induces the formation of multiple small cortical septin rings in yeast. J Cell Sci 131(15) PMID:29991513
Kato S, et al. (2018) Protein synthesis of Btn2 under pronounced translation repression during the process of alcoholic fermentation and wine-making in yeast. Appl Microbiol Biotechnol 102(22):9669-9677 PMID:30141081
Nguyen TTM, et al. (2018) The VFH1 (YLL056C) promoter is vanillin-inducible and enables mRNA translation despite pronounced translation repression caused by severe vanillin stress in Saccharomyces cerevisiae. Yeast 35(7):465-475 PMID:29575020
Ishida Y, et al. (2017) The yeast ADH7 promoter enables gene expression under pronounced translation repression caused by the combined stress of vanillin, furfural, and 5-hydroxymethylfurfural. J Biotechnol 252:65-72 PMID:28458045
Nakamura T, et al. (2017) Trans 18-carbon monoenoic fatty acid has distinct effects from its isomeric cis fatty acid on lipotoxicity and gene expression in Saccharomyces cerevisiae. J Biosci Bioeng 123(1):33-38 PMID:27484790
Ishida Y, et al. (2016) Prioritized Expression of BDH2 under Bulk Translational Repression and Its Contribution to Tolerance to Severe Vanillin Stress in Saccharomyces cerevisiae. Front Microbiol 7:1059 PMID:27458450
Ito Y, et al. (2016) Enhancement of protein production via the strong DIT1 terminator and two RNA-binding proteins in Saccharomyces cerevisiae. Sci Rep 6:36997 PMID:27845367
Yamauchi Y and Izawa S (2016) Prioritized Expression of BTN2 of Saccharomyces cerevisiae under Pronounced Translation Repression Induced by Severe Ethanol Stress. Front Microbiol 7:1319 PMID:27602028
Nguyen TT, et al. (2015) The ADH7 Promoter of Saccharomyces cerevisiae is Vanillin-Inducible and Enables mRNA Translation Under Severe Vanillin Stress. Front Microbiol 6:1390 PMID:26696995
Takabatake A, et al. (2015) Plasma membrane proteins Yro2 and Mrh1 are required for acetic acid tolerance in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 99(6):2805-14 PMID:25503505
Nguyen TT, et al. (2014) Vanillin causes the activation of Yap1 and mitochondrial fragmentation in Saccharomyces cerevisiae. J Biosci Bioeng 117(1):33-8 PMID:23850265
Iwaki A, et al. (2013) Vanillin inhibits translation and induces messenger ribonucleoprotein (mRNP) granule formation in saccharomyces cerevisiae: application and validation of high-content, image-based profiling. PLoS One 8(4):e61748 PMID:23637899
Iwaki A, et al. (2013) Biomass conversion inhibitors furfural and 5-hydroxymethylfurfural induce formation of messenger RNP granules and attenuate translation activity in Saccharomyces cerevisiae. Appl Environ Microbiol 79(5):1661-7 PMID:23275506
Yamamoto Y and Izawa S (2013) Adaptive response in stress granule formation and bulk translational repression upon a combined stress of mild heat shock and mild ethanol stress in yeast. Genes Cells 18(11):974-84 PMID:24033457
Iwaki A and Izawa S (2012) Acidic stress induces the formation of P-bodies, but not stress granules, with mild attenuation of bulk translation in Saccharomyces cerevisiae. Biochem J 446(2):225-33 PMID:22686455
Kamo K, et al. (2012) Temperature dependent N-glycosylation of plasma membrane heat shock protein Hsp30p in Saccharomyces cerevisiae. Biochem Biophys Res Commun 420(1):119-23 PMID:22405770
Yoshida A, et al. (2012) Reduction of glucose uptake through inhibition of hexose transporters and enhancement of their endocytosis by methylglyoxal in Saccharomyces cerevisiae. J Biol Chem 287(1):701-711 PMID:22094464
Ikeda K, et al. (2011) Modification of yeast characteristics by soy peptides: cultivation with soy peptides represses the formation of lipid bodies. Appl Microbiol Biotechnol 89(6):1971-7 PMID:21103987
Ukai Y, et al. (2011) Glutathione peroxidase 2 in Saccharomyces cerevisiae is distributed in mitochondria and involved in sporulation. Biochem Biophys Res Commun 411(3):580-5 PMID:21763276
Izawa S, et al. (2010) Vacuolar morphology of Saccharomyces cerevisiae during the process of wine making and Japanese sake brewing. Appl Microbiol Biotechnol 88(1):277-82 PMID:20625715
Nomura W, et al. (2010) Methylglyoxal activates Gcn2 to phosphorylate eIF2alpha independently of the TOR pathway in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 86(6):1887-94 PMID:20077113
Ohdate T, et al. (2010) Regulatory mechanism for expression of GPX1 in response to glucose starvation and Ca in Saccharomyces cerevisiae: involvement of Snf1 and Ras/cAMP pathway in Ca signaling. Genes Cells 15(1):59-75 PMID:20002498
Takatsume Y, et al. (2010) Calcineurin/Crz1 destabilizes Msn2 and Msn4 in the nucleus in response to Ca(2+) in Saccharomyces cerevisiae. Biochem J 427(2):275-87 PMID:20121702
Izawa S and Inoue Y (2009) Post-transcriptional regulation of gene expression in yeast under ethanol stress. Biotechnol Appl Biochem 53(Pt 2):93-9 PMID:19397495
Izawa S, et al. (2008) Heat shock and ethanol stress provoke distinctly different responses in 3'-processing and nuclear export of HSP mRNA in Saccharomyces cerevisiae. Biochem J 414(1):111-9 PMID:18442359
Nomura W, et al. (2008) Role of Gcn4 for adaptation to methylglyoxal in Saccharomyces cerevisiae: methylglyoxal attenuates protein synthesis through phosphorylation of eIF2alpha. Biochem Biophys Res Commun 376(4):738-42 PMID:18812164
Inoue Y, et al. (2007) Efficient extraction of thioreodoxin from Saccharomyces cerevisiae by ethanol. Appl Environ Microbiol 73(5):1672-5 PMID:17209065
Izawa S, et al. (2007) Formation of cytoplasmic P-bodies in sake yeast during Japanese sake brewing and wine making. Biosci Biotechnol Biochem 71(11):2800-7 PMID:17986786
Izawa S, et al. (2007) Improvement of tolerance to freeze-thaw stress of baker's yeast by cultivation with soy peptides. Appl Microbiol Biotechnol 75(3):533-7 PMID:17505771
Izawa S, et al. (2007) Msn2p/Msn4p-activation is essential for the recovery from freezing stress in yeast. Biochem Biophys Res Commun 352(3):750-5 PMID:17150183
Maeta K, et al. (2007) Green tea polyphenols function as prooxidants to activate oxidative-stress-responsive transcription factors in yeasts. Appl Environ Microbiol 73(2):572-80 PMID:17122395
Takeuchi Y, et al. (2007) Release of thioredoxin from Saccharomyces cerevisiae with environmental stimuli: solubilization of thioredoxin with ethanol. Appl Microbiol Biotechnol 75(6):1393-9 PMID:17390130
Izawa S, et al. (2006) Asr1, an alcohol-responsive factor of Saccharomyces cerevisiae, is dispensable for alcoholic fermentation. Appl Microbiol Biotechnol 72(3):560-5 PMID:16391921
Izawa S, et al. (2005) Characterization of the export of bulk poly(A)+ mRNA in Saccharomyces cerevisiae during the wine-making process. Appl Environ Microbiol 71(4):2179-82 PMID:15812055
Izawa S, et al. (2005) Characterization of Rat8 localization and mRNA export in Saccharomyces cerevisiae during the brewing of Japanese sake. Appl Microbiol Biotechnol 69(1):86-91 PMID:15803312
Maeta K, et al. (2005) Diagnosis of cell death induced by methylglyoxal, a metabolite derived from glycolysis, in Saccharomyces cerevisiae. FEMS Microbiol Lett 243(1):87-92 PMID:15668005
Maeta K, et al. (2005) Methylglyoxal, a metabolite derived from glycolysis, functions as a signal initiator of the high osmolarity glycerol-mitogen-activated protein kinase cascade and calcineurin/Crz1-mediated pathway in Saccharomyces cerevisiae. J Biol Chem 280(1):253-60 PMID:15520007
Takatsume Y, et al. (2005) Enrichment of yeast thioredoxin by green tea extract through activation of Yap1 transcription factor in Saccharomyces cerevisiae. J Agric Food Chem 53(2):332-7 PMID:15656669
Izawa S and Inoue Y (2004) A screening system for antioxidants using thioredoxin-deficient yeast: discovery of thermostable antioxidant activity from Agaricus blazei Murill. Appl Microbiol Biotechnol 64(4):537-42 PMID:14593506
Izawa S, et al. (2004) Deficiency in the glycerol channel Fps1p confers increased freeze tolerance to yeast cells: application of the fps1delta mutant to frozen dough technology. Appl Microbiol Biotechnol 66(3):303-5 PMID:15278313
Izawa S, et al. (2004) Intracellular glycerol influences resistance to freeze stress in Saccharomyces cerevisiae: analysis of a quadruple mutant in glycerol dehydrogenase genes and glycerol-enriched cells. Appl Microbiol Biotechnol 66(1):108-14 PMID:15127164
Izawa S, et al. (2004) Gle2p is essential to induce adaptation of the export of bulk poly(A)+ mRNA to heat shock in Saccharomyces cerevisiae. J Biol Chem 279(34):35469-78 PMID:15210706
Maeta K, et al. (2004) Activity of the Yap1 transcription factor in Saccharomyces cerevisiae is modulated by methylglyoxal, a metabolite derived from glycolysis. Mol Cell Biol 24(19):8753-64 PMID:15367692
Takatsume Y, et al. (2004) Identification of thermostable glyoxalase I in the fission yeast Schizosaccharomyces pombe. Arch Microbiol 181(5):371-7 PMID:15042280
Takemura R, et al. (2004) Stress response in yeast mRNA export factor: reversible changes in Rat8p localization are caused by ethanol stress but not heat shock. J Cell Sci 117(Pt 18):4189-97 PMID:15280434
Tsuzi D, et al. (2004) Distinct regulatory mechanism of yeast GPX2 encoding phospholipid hydroperoxide glutathione peroxidase by oxidative stress and a calcineurin/Crz1-mediated Ca2+ signaling pathway. FEBS Lett 569(1-3):301-6 PMID:15225652
Tsuzi D, et al. (2004) Regulation of the yeast phospholipid hydroperoxide glutathione peroxidase GPX2 by oxidative stress is mediated by Yap1 and Skn7. FEBS Lett 565(1-3):148-54 PMID:15135069
Kuge S, et al. (2001) Regulation of the yeast Yap1p nuclear export signal is mediated by redox signal-induced reversible disulfide bond formation. Mol Cell Biol 21(18):6139-50 PMID:11509657
Miyabe S, et al. (2001) The Zrc1 is involved in zinc transport system between vacuole and cytosol in Saccharomyces cerevisiae. Biochem Biophys Res Commun 282(1):79-83 PMID:11263974
Miyabe S, et al. (2000) Expression of ZRC1 coding for suppressor of zinc toxicity is induced by zinc-starvation stress in Zap1-dependent fashion in Saccharomyces cerevisiae. Biochem Biophys Res Commun 276(3):879-84 PMID:11027563
Sugiyama K, et al. (2000) The Yap1p-dependent induction of glutathione synthesis in heat shock response of Saccharomyces cerevisiae. J Biol Chem 275(20):15535-40 PMID:10809786
Sugiyama K, et al. (2000) Role of glutathione in heat-shock-induced cell death of Saccharomyces cerevisiae. Biochem J 352 Pt 1(Pt 1):71-8 PMID:11062059
Tsujimoto Y, et al. (2000) Cooperative regulation of DOG2, encoding 2-deoxyglucose-6-phosphate phosphatase, by Snf1 kinase and the high-osmolarity glycerol-mitogen-activated protein kinase cascade in stress responses of Saccharomyces cerevisiae. J Bacteriol 182(18):5121-6 PMID:10960096
Inoue Y, et al. (1999) Genetic analysis of glutathione peroxidase in oxidative stress response of Saccharomyces cerevisiae. J Biol Chem 274(38):27002-9 PMID:10480913
Izawa S, et al. (1999) Thioredoxin deficiency causes the constitutive activation of Yap1, an AP-1-like transcription factor in Saccharomyces cerevisiae. J Biol Chem 274(40):28459-65 PMID:10497208
Inoue Y, et al. (1998) Molecular identification of glutathione synthetase (GSH2) gene from Saccharomyces cerevisiae. Biochim Biophys Acta 1395(3):315-20 PMID:9512666
Izawa S, et al. (1998) Importance of glucose-6-phosphate dehydrogenase in the adaptive response to hydrogen peroxide in Saccharomyces cerevisiae. Biochem J 330 ( Pt 2)(Pt 2):811-7 PMID:9480895
Kobayashi S, et al. (1996) Correlation of the OSR/ZRCI gene product and the intracellular glutathione levels in Saccharomyces cerevisiae. Biotechnol Appl Biochem 23(1):3-6 PMID:8867889
Izawa S, et al. (1995) Oxidative stress response in yeast: effect of glutathione on adaptation to hydrogen peroxide stress in Saccharomyces cerevisiae. FEBS Lett 368(1):73-6 PMID:7615092