AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Hayashi N
  • References

Author: Hayashi N


References 28 references


No citations for this author.

Download References (.nbib)

  • Hayashi N and Oki M (2020) Altered metabolic regulation owing to gsp1 mutations encoding the nuclear small G protein in Saccharomyces cerevisiae. Curr Genet 66(2):335-344 PMID:31372715
    • SGD Paper
    • DOI full text
    • PubMed
  • Jayakody LN, et al. (2017) Identification and detoxification of glycolaldehyde, an unattended bioethanol fermentation inhibitor. Crit Rev Biotechnol 37(2):177-189 PMID:26953525
    • SGD Paper
    • DOI full text
    • PubMed
  • Jayakody LN, et al. (2015) SUMO expression shortens the lag phase of Saccharomyces cerevisiae yeast growth caused by complex interactive effects of major mixed fermentation inhibitors found in hot-compressed water-treated lignocellulosic hydrolysate. Appl Microbiol Biotechnol 99(1):501-15 PMID:25359478
    • SGD Paper
    • DOI full text
    • PubMed
  • Jayakody LN, et al. (2014) Erratum to: Engineering redox cofactor utilization for detoxification of glycolaldehyde, a key inhibitor of bioethanol production, in yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 98(14):6523
    • SGD Paper
    • DOI full text
  • Jayakody LN, et al. (2013) Engineering redox cofactor utilization for detoxification of glycolaldehyde, a key inhibitor of bioethanol production, in yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 97(14):6589-600 PMID:23744286
    • SGD Paper
    • DOI full text
    • PubMed
  • Jayakody LN, et al. (2012) Improvement of tolerance of Saccharomyces cerevisiae to hot-compressed water-treated cellulose by expression of ADH1. Appl Microbiol Biotechnol 94(1):273-83 PMID:22311646
    • SGD Paper
    • DOI full text
    • PubMed
  • Kakuta S, et al. (2012) Atg9 vesicles recruit vesicle-tethering proteins Trs85 and Ypt1 to the autophagosome formation site. J Biol Chem 287(53):44261-9 PMID:23129774
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Jayakody LN, et al. (2011) Identification of glycolaldehyde as the key inhibitor of bioethanol fermentation by yeast and genome-wide analysis of its toxicity. Biotechnol Lett 33(2):285-92 PMID:20960220
    • SGD Paper
    • DOI full text
    • PubMed
  • Sekiguchi T, et al. (2008) Genetic evidence that Ras-like GTPases, Gtr1p, and Gtr2p, are involved in epigenetic control of gene expression in Saccharomyces cerevisiae. Biochem Biophys Res Commun 368(3):748-54 PMID:18258182
    • SGD Paper
    • DOI full text
    • PubMed
  • Hayashi N, et al. (2007) Temperature-sensitive defects of the GSP1gene, yeast Ran homologue, activate the Tel1-dependent pathway. Biochem Biophys Res Commun 353(2):330-6 PMID:17187759
    • SGD Paper
    • DOI full text
    • PubMed
  • Hayashi N, et al. (2007) Mutations in Ran system affected telomere silencing in Saccharomyces cerevisiae. Biochem Biophys Res Commun 363(3):788-94 PMID:17904525
    • SGD Paper
    • DOI full text
    • PubMed
  • Ohkuni K, et al. (2006) Suppressor analysis of the mpt5/htr1/uth4/puf5 deletion in Saccharomyces cerevisiae. Mol Genet Genomics 275(1):81-8 PMID:16328373
    • SGD Paper
    • DOI full text
    • PubMed
  • Hayashi N, et al. (2005) The SIT4 gene, which encodes protein phosphatase 2A, is required for telomere function in Saccharomyces cerevisiae. Curr Genet 47(6):359-67 PMID:15843932
    • SGD Paper
    • DOI full text
    • PubMed
  • Hayashi N and Murakami S (2002) STM1, a gene which encodes a guanine quadruplex binding protein, interacts with CDC13 in Saccharomyces cerevisiae. Mol Genet Genomics 267(6):806-13 PMID:12207228
    • SGD Paper
    • DOI full text
    • PubMed
  • He X, et al. (1998) The identification of cDNAs that affect the mitosis-to-interphase transition in Schizosaccharomyces pombe, including sbp1, which encodes a spi1p-GTP-binding protein. Genetics 148(2):645-56 PMID:9504913
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kobayashi O, et al. (1998) Region of FLO1 proteins responsible for sugar recognition. J Bacteriol 180(24):6503-10 PMID:9851992
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Oki M, et al. (1998) Nuclear protein import, but not mRNA export, is defective in all Saccharomyces cerevisiae mutants that produce temperature-sensitive forms of the Ran GTPase homologue Gsp1p. Mol Gen Genet 257(6):624-34 PMID:9604885
    • SGD Paper
    • DOI full text
    • PubMed
  • Noguchi E, et al. (1997) Yrb2p, a Nup2p-related yeast protein, has a functional overlap with Rna1p, a yeast Ran-GTPase-activating protein. Mol Cell Biol 17(4):2235-46 PMID:9121474
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hayashi N, et al. (1996) Genetic interaction of DED1 encoding a putative ATP-dependent RNA helicase with SRM1 encoding a mammalian RCC1 homolog in Saccharomyces cerevisiae. Mol Gen Genet 253(1-2):149-56 PMID:9003298
    • SGD Paper
    • DOI full text
    • PubMed
  • Nakashima N, et al. (1996) Putative GTPase Gtr1p genetically interacts with the RanGTPase cycle in Saccharomyces cerevisiae. J Cell Sci 109 ( Pt 9):2311-8 PMID:8886981
    • SGD Paper
    • DOI full text
    • PubMed
  • Noguchi E, et al. (1996) Dis3, implicated in mitotic control, binds directly to Ran and enhances the GEF activity of RCC1. EMBO J 15(20):5595-605 PMID:8896453
    • SGD Paper
    • PMC full text
    • PubMed
  • Seki T, et al. (1996) RCC1 in the Ran pathway. J Biochem 120(2):207-14 PMID:8889801
    • SGD Paper
    • DOI full text
    • PubMed
  • Hayashi N, et al. (1995) RanBP1, a Ras-like nuclear G protein binding to Ran/TC4, inhibits RCC1 via Ran/TC4. Mol Gen Genet 247(6):661-9 PMID:7616957
    • SGD Paper
    • DOI full text
    • PubMed
  • Ogawa N, et al. (1993) Promoter analysis of the PHO81 gene encoding a 134 kDa protein bearing ankyrin repeats in the phosphatase regulon of Saccharomyces cerevisiae. Mol Gen Genet 238(3):444-54 PMID:8492812
    • SGD Paper
    • DOI full text
    • PubMed
  • Ogawa N, et al. (1993) Promoter analysis of the PHO81 gene encoding a 134 kDa protein bearing ankyrin repeats in the phosphatase regulon in Saccharomyces cerevisiae Personal Communication
    • SGD Paper
  • Hayashi N and Oshima Y (1991) Specific cis-acting sequence for PHO8 expression interacts with PHO4 protein, a positive regulatory factor, in Saccharomyces cerevisiae. Mol Cell Biol 11(2):785-94 PMID:1990283
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kaneko Y, et al. (1987) Structural characteristics of the PHO8 gene encoding repressible alkaline phosphatase in Saccharomyces cerevisiae. Gene 58(1):137-48 PMID:3319783
    • SGD Paper
    • DOI full text
    • PubMed
  • Nishiwaki K, et al. (1987) Structure of the yeast HIS5 gene responsive to general control of amino acid biosynthesis. Mol Gen Genet 208(1-2):159-67 PMID:3302607
    • SGD Paper
    • DOI full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top