AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Denis CL
  • References

Author: Denis CL


References 58 references


No citations for this author.

Download References (.nbib)

  • Park S, et al. (2022) The non-prion SUP35 preexists in large chaperone-containing molecular complexes. Proteins 90(3):869-880 PMID:34791707
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Denis CL, et al. (2018) Defining the protein complexome of translation termination factor eRF1: Identification of four novel eRF1-containing complexes that range from 20S to 57S in size. Proteins 86(2):177-191 PMID:29139201
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Denis CL, et al. (2018) Identification of a 57S translation complex containing closed-loop factors and the 60S ribosome subunit. Sci Rep 8(1):11468 PMID:30065356
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Xi W, et al. (2016) Multiple discrete soluble aggregates influence polyglutamine toxicity in a Huntington's disease model system. Sci Rep 6:34916 PMID:27721444
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zhang C, et al. (2014) Only a subset of the PAB1-mRNP proteome is present in mRNA translation complexes. Protein Sci 23(8):1036-49 PMID:24838188
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zhang C, et al. (2013) The RRM1 domain of the poly(A)-binding protein from Saccharomyces cerevisiae is critical to control of mRNA deadenylation. Mol Genet Genomics 288(9):401-12 PMID:23793387
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Richardson R, et al. (2012) Mass spectrometric identification of proteins that interact through specific domains of the poly(A) binding protein. Mol Genet Genomics 287(9):711-730 PMID:22836166
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wang X, et al. (2012) Use of the novel technique of analytical ultracentrifugation with fluorescence detection system identifies a 77S monosomal translation complex. Protein Sci 21(9):1253-68 PMID:22733647
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lee D, et al. (2010) PUF3 acceleration of deadenylation in vivo can operate independently of CCR4 activity, possibly involving effects on the PAB1-mRNP structure. J Mol Biol 399(4):562-75 PMID:20435044
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Govindan M, et al. (2009) Identification of CCR4 and other essential thyroid hormone receptor co-activators by modified yeast synthetic genetic array analysis. Proc Natl Acad Sci U S A 106(47):19854-9 PMID:19903885
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cui Y, et al. (2008) Genome wide expression analysis of the CCR4-NOT complex indicates that it consists of three modules with the NOT module controlling SAGA-responsive genes. Mol Genet Genomics 279(4):323-37 PMID:18214544
    • SGD Paper
    • DOI full text
    • PubMed
  • Ohn T, et al. (2007) CAF1 plays an important role in mRNA deadenylation separate from its contact to CCR4. Nucleic Acids Res 35(9):3002-15 PMID:17439972
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yao G, et al. (2007) PAB1 self-association precludes its binding to poly(A), thereby accelerating CCR4 deadenylation in vivo. Mol Cell Biol 27(17):6243-53 PMID:17620415
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Traven A, et al. (2005) Ccr4-not complex mRNA deadenylase activity contributes to DNA damage responses in Saccharomyces cerevisiae. Genetics 169(1):65-75 PMID:15466434
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Clark LB, et al. (2004) Systematic mutagenesis of the leucine-rich repeat (LRR) domain of CCR4 reveals specific sites for binding to CAF1 and a separate critical role for the LRR in CCR4 deadenylase activity. J Biol Chem 279(14):13616-23 PMID:14734555
    • SGD Paper
    • DOI full text
    • PubMed
  • Viswanathan P, et al. (2004) Mouse CAF1 can function as a processive deadenylase/3'-5'-exonuclease in vitro but in yeast the deadenylase function of CAF1 is not required for mRNA poly(A) removal. J Biol Chem 279(23):23988-95 PMID:15044470
    • SGD Paper
    • DOI full text
    • PubMed
  • Cui Y and Denis CL (2003) In vivo evidence that defects in the transcriptional elongation factors RPB2, TFIIS, and SPT5 enhance upstream poly(A) site utilization. Mol Cell Biol 23(21):7887-901 PMID:14560031
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Denis CL and Chen J (2003) The CCR4-NOT complex plays diverse roles in mRNA metabolism. Prog Nucleic Acid Res Mol Biol 73:221-50 PMID:12882519
    • SGD Paper
    • DOI full text
    • PubMed
  • Viswanathan P, et al. (2003) Identification of multiple RNA features that influence CCR4 deadenylation activity. J Biol Chem 278(17):14949-55 PMID:12590136
    • SGD Paper
    • DOI full text
    • PubMed
  • Chen J, et al. (2002) CCR4, a 3'-5' poly(A) RNA and ssDNA exonuclease, is the catalytic component of the cytoplasmic deadenylase. EMBO J 21(6):1414-26 PMID:11889047
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Russell P, et al. (2002) Characterization of mutations in NOT2 indicates that it plays an important role in maintaining the integrity of the CCR4-NOT complex. J Mol Biol 322(1):27-39 PMID:12215412
    • SGD Paper
    • DOI full text
    • PubMed
  • Chen J, et al. (2001) Purification and characterization of the 1.0 MDa CCR4-NOT complex identifies two novel components of the complex. J Mol Biol 314(4):683-94 PMID:11733989
    • SGD Paper
    • DOI full text
    • PubMed
  • Denis CL, et al. (2001) Genetic evidence supports a role for the yeast CCR4-NOT complex in transcriptional elongation. Genetics 158(2):627-34 PMID:11404327
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Liu HY, et al. (2001) Characterization of CAF4 and CAF16 reveals a functional connection between the CCR4-NOT complex and a subset of SRB proteins of the RNA polymerase II holoenzyme. J Biol Chem 276(10):7541-8 PMID:11113136
    • SGD Paper
    • DOI full text
    • PubMed
  • Tucker M, et al. (2001) The transcription factor associated Ccr4 and Caf1 proteins are components of the major cytoplasmic mRNA deadenylase in Saccharomyces cerevisiae. Cell 104(3):377-86 PMID:11239395
    • SGD Paper
    • DOI full text
    • PubMed
  • Badarinarayana V, et al. (2000) Functional interaction of CCR4-NOT proteins with TATAA-binding protein (TBP) and its associated factors in yeast. Genetics 155(3):1045-54 PMID:10880468
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bai Y, et al. (1999) The CCR4 and CAF1 proteins of the CCR4-NOT complex are physically and functionally separated from NOT2, NOT4, and NOT5. Mol Cell Biol 19(10):6642-51 PMID:10490603
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Chang M, et al. (1999) A complex containing RNA polymerase II, Paf1p, Cdc73p, Hpr1p, and Ccr4p plays a role in protein kinase C signaling. Mol Cell Biol 19(2):1056-67 PMID:9891041
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hata H, et al. (1998) Dhh1p, a putative RNA helicase, associates with the general transcription factors Pop2p and Ccr4p from Saccharomyces cerevisiae. Genetics 148(2):571-9 PMID:9504907
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Komarnitsky PB, et al. (1998) ADR1-mediated transcriptional activation requires the presence of an intact TFIID complex. Mol Cell Biol 18(10):5861-7 PMID:9742103
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Komarnitsky SI, et al. (1998) DBF2 protein kinase binds to and acts through the cell cycle-regulated MOB1 protein. Mol Cell Biol 18(4):2100-7 PMID:9528782
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Liu HY, et al. (1998) The NOT proteins are part of the CCR4 transcriptional complex and affect gene expression both positively and negatively. EMBO J 17(4):1096-106 PMID:9463387
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Liu HY, et al. (1997) DBF2, a cell cycle-regulated protein kinase, is physically and functionally associated with the CCR4 transcriptional regulatory complex. EMBO J 16(17):5289-98 PMID:9311989
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Verdone L, et al. (1997) Factors affecting Saccharomyces cerevisiae ADH2 chromatin remodeling and transcription. J Biol Chem 272(49):30828-34 PMID:9388226
    • SGD Paper
    • DOI full text
    • PubMed
  • Chiang YC, et al. (1996) ADR1 activation domains contact the histone acetyltransferase GCN5 and the core transcriptional factor TFIIB. J Biol Chem 271(50):32359-65 PMID:8943299
    • SGD Paper
    • DOI full text
    • PubMed
  • Draper MP, et al. (1995) Identification of a mouse protein whose homolog in Saccharomyces cerevisiae is a component of the CCR4 transcriptional regulatory complex. Mol Cell Biol 15(7):3487-95 PMID:7791755
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Simon MM, et al. (1995) A C-terminal region of the Saccharomyces cerevisiae transcription factor ADR1 plays an important role in the regulation of peroxisome proliferation by fatty acids. Mol Gen Genet 249(3):289-96 PMID:7500953
    • SGD Paper
    • DOI full text
    • PubMed
  • Cook WJ, et al. (1994) Mutations in the zinc-finger region of the yeast regulatory protein ADR1 affect both DNA binding and transcriptional activation. J Biol Chem 269(12):9374-9 PMID:8132676
    • SGD Paper
    • PubMed
  • Cook WJ, et al. (1994) Dissection of the ADR1 protein reveals multiple, functionally redundant activation domains interspersed with inhibitory regions: evidence for a repressor binding to the ADR1c region. Mol Cell Biol 14(1):629-40 PMID:8264631
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Denis CL, et al. (1994) The yeast CCR4 protein is neither regulated by nor associated with the SPT6 and SPT10 proteins and forms a functionally distinct complex from that of the SNF/SWI transcription factors. Genetics 138(4):1005-13 PMID:7896086
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Draper MP, et al. (1994) CCR4 is a glucose-regulated transcription factor whose leucine-rich repeat binds several proteins important for placing CCR4 in its proper promoter context. Mol Cell Biol 14(7):4522-31 PMID:8007957
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cook WJ and Denis CL (1993) Identification of three genes required for the glucose-dependent transcription of the yeast transcriptional activator ADR1. Curr Genet 23(3):192-200 PMID:8435848
    • SGD Paper
    • DOI full text
    • PubMed
  • Denis CL, et al. (1992) ADR1c mutations enhance the ability of ADR1 to activate transcription by a mechanism that is independent of effects on cyclic AMP-dependent protein kinase phosphorylation of Ser-230. Mol Cell Biol 12(4):1507-14 PMID:1549108
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Malvar T, et al. (1992) The CCR4 protein from Saccharomyces cerevisiae contains a leucine-rich repeat region which is required for its control of ADH2 gene expression. Genetics 132(4):951-62 PMID:1459446
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Vallari RC, et al. (1992) Glucose repression of the yeast ADH2 gene occurs through multiple mechanisms, including control of the protein synthesis of its transcriptional activator, ADR1. Mol Cell Biol 12(4):1663-73 PMID:1549119
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Denis CL and Audino DC (1991) The CCR1 (SNF1) and SCH9 protein kinases act independently of cAMP-dependent protein kinase and the transcriptional activator ADR1 in controlling yeast ADH2 expression. Mol Gen Genet 229(3):395-9 PMID:1944227
    • SGD Paper
    • DOI full text
    • PubMed
  • Denis CL, et al. (1991) Substrate specificities for yeast and mammalian cAMP-dependent protein kinases are similar but not identical. J Biol Chem 266(27):17932-5 PMID:1917932
    • SGD Paper
    • PubMed
  • Denis CL and Malvar T (1990) The CCR4 gene from Saccharomyces cerevisiae is required for both nonfermentative and spt-mediated gene expression. Genetics 124(2):283-91 PMID:2407614
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bemis LT and Denis CL (1989) Characterization of the adr1-1 nonsense mutation identifies the translational start of the yeast transcriptional activator ADR1. Yeast 5(4):291-8 PMID:2675489
    • SGD Paper
    • DOI full text
    • PubMed
  • Cherry JR and Denis CL (1989) Overexpression of the yeast transcriptional activator ADR1 induces mutation of the mitochondrial genome. Curr Genet 15(5):311-7 PMID:2676204
    • SGD Paper
    • DOI full text
    • PubMed
  • Cherry JR, et al. (1989) Cyclic AMP-dependent protein kinase phosphorylates and inactivates the yeast transcriptional activator ADR1. Cell 56(3):409-19 PMID:2644045
    • SGD Paper
    • DOI full text
    • PubMed
  • Bemis LT and Denis CL (1988) Identification of functional regions in the yeast transcriptional activator ADR1. Mol Cell Biol 8(5):2125-31 PMID:3290650
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Denis CL (1987) The effects of ADR1 and CCR1 gene dosage on the regulation of the glucose-repressible alcohol dehydrogenase from Saccharomyces cerevisiae. Mol Gen Genet 208(1-2):101-6 PMID:3302603
    • SGD Paper
    • DOI full text
    • PubMed
  • Denis CL and Gallo C (1986) Constitutive RNA synthesis for the yeast activator ADR1 and identification of the ADR1-5c mutation: implications in posttranslational control of ADR1. Mol Cell Biol 6(11):4026-30 PMID:3540604
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Denis CL (1984) Identification of new genes involved in the regulation of yeast alcohol dehydrogenase II. Genetics 108(4):833-44 PMID:6392016
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Denis CL and Young ET (1983) Isolation and characterization of the positive regulatory gene ADR1 from Saccharomyces cerevisiae. Mol Cell Biol 3(3):360-70 PMID:6341814
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Denis CL, et al. (1983) mRNA levels for the fermentative alcohol dehydrogenase of Saccharomyces cerevisiae decrease upon growth on a nonfermentable carbon source. J Biol Chem 258(2):1165-71 PMID:6337132
    • SGD Paper
    • PubMed
  • Denis CL, et al. (1981) A positive regulatory gene is required for accumulation of the functional messenger RNA for the glucose-repressible alcohol dehydrogenase from Saccharomyces cerevisiae. J Mol Biol 148(4):355-68 PMID:7031263
    • SGD Paper
    • DOI full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top