AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: De Virgilio C
  • References

Author: De Virgilio C


References 92 references


No citations for this author.

Download References (.nbib)

  • Nicastro R, et al. (2025) TORC1 autonomously controls its spatial partitioning via the Rag GTPase tether Tco89. Cell Rep 44(5):115683 PMID:40359108
    • SGD Paper
    • DOI full text
    • PubMed
  • Caligaris M and De Virgilio C (2024) Proxies introduce bias in decoding TORC1 activity. MicroPubl Biol 2024 PMID:38605723
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Füllbrunn N, et al. (2024) The GTPase activating protein Gyp7 regulates Rab7/Ypt7 activity on late endosomes. J Cell Biol 223(6) PMID:38536036
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hofer SJ, et al. (2024) Spermidine is essential for fasting-mediated autophagy and longevity. Nat Cell Biol 26(9):1571-1584 PMID:39117797
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Caligaris M, et al. (2023) Snf1/AMPK fine-tunes TORC1 signaling in response to glucose starvation. Elife 12 PMID:36749016
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Caligaris M, et al. (2023) The Yeast Protein Kinase Sch9 Functions as a Central Nutrient-Responsive Hub That Calibrates Metabolic and Stress-Related Responses. J Fungi (Basel) 9(8) PMID:37623558
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Deprez MA, et al. (2023) The nutrient-responsive CDK Pho85 primes the Sch9 kinase for its activation by TORC1. PLoS Genet 19(2):e1010641 PMID:36791155
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Grziwa S, et al. (2023) Yck3 casein kinase-mediated phosphorylation determines Ivy1 localization and function at endosomes and the vacuole. J Cell Sci 136(12) PMID:37259913
    • SGD Paper
    • DOI full text
    • PubMed
  • Nicastro R, et al. (2023) Malonyl-CoA is a conserved endogenous ATP-competitive mTORC1 inhibitor. Nat Cell Biol 25(9):1303-1318 PMID:37563253
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gao J, et al. (2022) The HOPS tethering complex is required to maintain signaling endosome identity and TORC1 activity. J Cell Biol 221(5) PMID:35404387
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Nicastro R, et al. (2022) Manganese is a physiologically relevant TORC1 activator in yeast and mammals. Elife 11 PMID:35904415
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Chen Z, et al. (2021) TORC1 Determines Fab1 Lipid Kinase Function at Signaling Endosomes and Vacuoles. Curr Biol 31(2):297-309.e8 PMID:33157024
    • SGD Paper
    • DOI full text
    • PubMed
  • Dokládal L, et al. (2021) Phosphoproteomic responses of TORC1 target kinases reveal discrete and convergent mechanisms that orchestrate the quiescence program in yeast. Cell Rep 37(13):110149 PMID:34965436
    • SGD Paper
    • DOI full text
    • PubMed
  • Dokládal L, et al. (2021) Global phosphoproteomics pinpoints uncharted Gcn2-mediated mechanisms of translational control. Mol Cell 81(9):1879-1889.e6 PMID:33743194
    • SGD Paper
    • DOI full text
    • PubMed
  • Nicastro R, et al. (2021) Indole-3-acetic acid is a physiological inhibitor of TORC1 in yeast. PLoS Genet 17(3):e1009414 PMID:33690632
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tate JJ, et al. (2021) N- and C-terminal Gln3-Tor1 interaction sites: one acting negatively and the other positively to regulate nuclear Gln3 localization. Genetics 217(4) PMID:33857304
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Brenna A, et al. (2019) Cyclin-dependent kinase 5 (CDK5) regulates the circadian clock. Elife 8 PMID:31687929
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hatakeyama R and De Virgilio C (2019) A spatially and functionally distinct pool of TORC1 defines signaling endosomes in yeast. Autophagy 15(5):915-916 PMID:30732525
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hatakeyama R and De Virgilio C (2019) TORC1 specifically inhibits microautophagy through ESCRT-0. Curr Genet 65(5):1243-1249 PMID:31041524
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hatakeyama R, et al. (2019) Spatially Distinct Pools of TORC1 Balance Protein Homeostasis. Mol Cell 73(2):325-338.e8 PMID:30527664
    • SGD Paper
    • DOI full text
    • PubMed
  • Hu Z, et al. (2019) Multilayered Control of Protein Turnover by TORC1 and Atg1. Cell Rep 28(13):3486-3496.e6 PMID:31553916
    • SGD Paper
    • DOI full text
    • PubMed
  • Zhang T, et al. (2019) Structural insights into the EGO-TC-mediated membrane tethering of the TORC1-regulatory Rag GTPases. Sci Adv 5(9):eaax8164 PMID:31579828
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Fruhmann G, et al. (2018) The Impact of ESCRT on Aβ1-42 Induced Membrane Lesions in a Yeast Model for Alzheimer's Disease. Front Mol Neurosci 11:406 PMID:30455629
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Michel AH, et al. (2017) Functional mapping of yeast genomes by saturated transposition. Elife 6 PMID:28481201
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Moreno-Torres M, et al. (2017) TORC1 coordinates the conversion of Sic1 from a target to an inhibitor of cyclin-CDK-Cks1. Cell Discov 3:17012 PMID:28496991
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Péli-Gulli MP, et al. (2017) Feedback Inhibition of the Rag GTPase GAP Complex Lst4-Lst7 Safeguards TORC1 from Hyperactivation by Amino Acid Signals. Cell Rep 20(2):281-288 PMID:28700931
    • SGD Paper
    • DOI full text
    • PubMed
  • Wilms T, et al. (2017) The yeast protein kinase Sch9 adjusts V-ATPase assembly/disassembly to control pH homeostasis and longevity in response to glucose availability. PLoS Genet 13(6):e1006835 PMID:28604780
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hatakeyama R and De Virgilio C (2016) Unsolved mysteries of Rag GTPase signaling in yeast. Small GTPases 7(4):239-246 PMID:27400376
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Powis K and De Virgilio C (2016) Conserved regulators of Rag GTPases orchestrate amino acid-dependent TORC1 signaling. Cell Discov 2:15049 PMID:27462445
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Moreno-Torres M, et al. (2015) TORC1 controls G1-S cell cycle transition in yeast via Mpk1 and the greatwall kinase pathway. Nat Commun 6:8256 PMID:26356805
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Numrich J, et al. (2015) The I-BAR protein Ivy1 is an effector of the Rab7 GTPase Ypt7 involved in vacuole membrane homeostasis. J Cell Sci 128(13):2278-92 PMID:25999476
    • SGD Paper
    • DOI full text
    • PubMed
  • Powis K, et al. (2015) Crystal structure of the Ego1-Ego2-Ego3 complex and its role in promoting Rag GTPase-dependent TORC1 signaling. Cell Res 25(9):1043-59 PMID:26206314
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Péli-Gulli MP, et al. (2015) Amino Acids Stimulate TORC1 through Lst4-Lst7, a GTPase-Activating Protein Complex for the Rag Family GTPase Gtr2. Cell Rep 13(1):1-7 PMID:26387955
    • SGD Paper
    • DOI full text
    • PubMed
  • Dubots E, et al. (2014) TORC1 regulates Pah1 phosphatidate phosphatase activity via the Nem1/Spo7 protein phosphatase complex. PLoS One 9(8):e104194 PMID:25117580
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bontron S, et al. (2013) Yeast endosulfines control entry into quiescence and chronological life span by inhibiting protein phosphatase 2A. Cell Rep 3(1):16-22 PMID:23273919
    • SGD Paper
    • DOI full text
    • PubMed
  • Panchaud N, et al. (2013) SEACing the GAP that nEGOCiates TORC1 activation: evolutionary conservation of Rag GTPase regulation. Cell Cycle 12(18):2948-52 PMID:23974112
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Panchaud N, et al. (2013) Amino acid deprivation inhibits TORC1 through a GTPase-activating protein complex for the Rag family GTPase Gtr1. Sci Signal 6(277):ra42 PMID:23716719
    • SGD Paper
    • DOI full text
    • PubMed
  • Talarek N, et al. (2013) Quantification of mRNA stability of stress-responsive yeast genes following conditional excision of open reading frames. RNA Biol 10(8):1299-308 PMID:23792549
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bonfils G, et al. (2012) Leucyl-tRNA synthetase controls TORC1 via the EGO complex. Mol Cell 46(1):105-10 PMID:22424774
    • SGD Paper
    • DOI full text
    • PubMed
  • Chen J, et al. (2012) Identification of a small molecule yeast TORC1 inhibitor with a multiplex screen based on flow cytometry. ACS Chem Biol 7(4):715-22 PMID:22260433
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • De Virgilio C (2012) The essence of yeast quiescence. FEMS Microbiol Rev 36(2):306-39 PMID:21658086
    • SGD Paper
    • DOI full text
    • PubMed
  • Zhang T, et al. (2012) Ego3 functions as a homodimer to mediate the interaction between Gtr1-Gtr2 and Ego1 in the ego complex to activate TORC1. Structure 20(12):2151-60 PMID:23123112
    • SGD Paper
    • DOI full text
    • PubMed
  • Kawai S, et al. (2011) Mitochondrial genomic dysfunction causes dephosphorylation of Sch9 in the yeast Saccharomyces cerevisiae. Eukaryot Cell 10(10):1367-9 PMID:21841122
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Luo X, et al. (2011) Initiation of the yeast G0 program requires Igo1 and Igo2, which antagonize activation of decapping of specific nutrient-regulated mRNAs. RNA Biol 8(1):14-7 PMID:21289492
    • SGD Paper
    • DOI full text
    • PubMed
  • Binda M, et al. (2010) An EGOcentric view of TORC1 signaling. Cell Cycle 9(2):221-2 PMID:20023374
    • SGD Paper
    • DOI full text
    • PubMed
  • Mok J, et al. (2010) Deciphering protein kinase specificity through large-scale analysis of yeast phosphorylation site motifs. Sci Signal 3(109):ra12 PMID:20159853
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Smets B, et al. (2010) Life in the midst of scarcity: adaptations to nutrient availability in Saccharomyces cerevisiae. Curr Genet 56(1):1-32 PMID:20054690
    • SGD Paper
    • DOI full text
    • PubMed
  • Talarek N, et al. (2010) Initiation of the TORC1-regulated G0 program requires Igo1/2, which license specific mRNAs to evade degradation via the 5'-3' mRNA decay pathway. Mol Cell 38(3):345-55 PMID:20471941
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Binda M, et al. (2009) The Vam6 GEF controls TORC1 by activating the EGO complex. Mol Cell 35(5):563-73 PMID:19748353
    • SGD Paper
    • DOI full text
    • PubMed
  • Fiechter V, et al. (2008) The evolutionary conserved BER1 gene is involved in microtubule stability in yeast. Curr Genet 53(2):107-15 PMID:18064466
    • SGD Paper
    • DOI full text
    • PubMed
  • Froquet R, et al. (2008) Control of cellular physiology by TM9 proteins in yeast and Dictyostelium. J Biol Chem 283(11):6764-72 PMID:18178563
    • SGD Paper
    • DOI full text
    • PubMed
  • Wanke V, et al. (2008) Caffeine extends yeast lifespan by targeting TORC1. Mol Microbiol 69(1):277-85 PMID:18513215
    • SGD Paper
    • DOI full text
    • PubMed
  • Zabrocki P, et al. (2008) Phosphorylation, lipid raft interaction and traffic of alpha-synuclein in a yeast model for Parkinson. Biochim Biophys Acta 1783(10):1767-80 PMID:18634833
    • SGD Paper
    • DOI full text
    • PubMed
  • De Filippi L, et al. (2007) Membrane stress is coupled to a rapid translational control of gene expression in chlorpromazine-treated cells. Curr Genet 52(3-4):171-85 PMID:17710403
    • SGD Paper
    • DOI full text
    • PubMed
  • Mulder KW, et al. (2007) Modulation of Ubc4p/Ubc5p-mediated stress responses by the RING-finger-dependent ubiquitin-protein ligase Not4p in Saccharomyces cerevisiae. Genetics 176(1):181-92 PMID:17513889
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Urban J, et al. (2007) Sch9 is a major target of TORC1 in Saccharomyces cerevisiae. Mol Cell 26(5):663-74 PMID:17560372
    • SGD Paper
    • DOI full text
    • PubMed
  • Cameroni E, et al. (2006) Phosphatidylinositol 4-phosphate is required for translation initiation in Saccharomyces cerevisiae. J Biol Chem 281(50):38139-49 PMID:17005563
    • SGD Paper
    • DOI full text
    • PubMed
  • De Virgilio C and Loewith R (2006) Cell growth control: little eukaryotes make big contributions. Oncogene 25(48):6392-415 PMID:17041625
    • SGD Paper
    • DOI full text
    • PubMed
  • De Virgilio C and Loewith R (2006) The TOR signalling network from yeast to man. Int J Biochem Cell Biol 38(9):1476-81 PMID:16647875
    • SGD Paper
    • DOI full text
    • PubMed
  • Swinnen E, et al. (2006) Rim15 and the crossroads of nutrient signalling pathways in Saccharomyces cerevisiae. Cell Div 1:3 PMID:16759348
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Dubouloz F, et al. (2005) The TOR and EGO protein complexes orchestrate microautophagy in yeast. Mol Cell 19(1):15-26 PMID:15989961
    • SGD Paper
    • DOI full text
    • PubMed
  • Knaus M, et al. (2005) The Bud14p-Glc7p complex functions as a cortical regulator of dynein in budding yeast. EMBO J 24(17):3000-11 PMID:16107882
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lenssen E, et al. (2005) The Ccr4-Not complex independently controls both Msn2-dependent transcriptional activation--via a newly identified Glc7/Bud14 type I protein phosphatase module--and TFIID promoter distribution. Mol Cell Biol 25(1):488-98 PMID:15601868
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ptacek J, et al. (2005) Global analysis of protein phosphorylation in yeast. Nature 438(7068):679-84 PMID:16319894
    • SGD Paper
    • DOI full text
    • PubMed
  • Roosen J, et al. (2005) PKA and Sch9 control a molecular switch important for the proper adaptation to nutrient availability. Mol Microbiol 55(3):862-80 PMID:15661010
    • SGD Paper
    • DOI full text
    • PubMed
  • Wanke V, et al. (2005) Regulation of G0 entry by the Pho80-Pho85 cyclin-CDK complex. EMBO J 24(24):4271-8 PMID:16308562
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cameroni E, et al. (2004) The novel yeast PAS kinase Rim 15 orchestrates G0-associated antioxidant defense mechanisms. Cell Cycle 3(4):462-8 PMID:15300954
    • SGD Paper
    • DOI full text
    • PubMed
  • Dubouloz, F., et al. (2004)
    • SGD Paper
  • Pedruzzi I, et al. (2003) TOR and PKA signaling pathways converge on the protein kinase Rim15 to control entry into G0. Mol Cell 12(6):1607-13 PMID:14690612
    • SGD Paper
    • DOI full text
    • PubMed
  • Lee PR, et al. (2002) Bni5p, a septin-interacting protein, is required for normal septin function and cytokinesis in Saccharomyces cerevisiae. Mol Cell Biol 22(19):6906-20 PMID:12215547
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lenssen E, et al. (2002) Saccharomyces cerevisiae Ccr4-not complex contributes to the control of Msn2p-dependent transcription by the Ras/cAMP pathway. Mol Microbiol 43(4):1023-37 PMID:11929548
    • SGD Paper
    • DOI full text
    • PubMed
  • Harkins HA, et al. (2001) Bud8p and Bud9p, proteins that may mark the sites for bipolar budding in yeast. Mol Biol Cell 12(8):2497-518 PMID:11514631
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Pedruzzi I, et al. (2000) Saccharomyces cerevisiae Ras/cAMP pathway controls post-diauxic shift element-dependent transcription through the zinc finger protein Gis1. EMBO J 19(11):2569-79 PMID:10835355
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Reinders A, et al. (1999) The thermophilic yeast Hansenula polymorpha does not require trehalose synthesis for growth at high temperatures but does for normal acquisition of thermotolerance. J Bacteriol 181(15):4665-8 PMID:10419968
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bell W, et al. (1998) Composition and functional analysis of the Saccharomyces cerevisiae trehalose synthase complex. J Biol Chem 273(50):33311-9 PMID:9837904
    • SGD Paper
    • DOI full text
    • PubMed
  • Reinders A, et al. (1998) Saccharomyces cerevisiae cAMP-dependent protein kinase controls entry into stationary phase through the Rim15p protein kinase. Genes Dev 12(18):2943-55 PMID:9744870
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • DeMarini DJ, et al. (1997) A septin-based hierarchy of proteins required for localized deposition of chitin in the Saccharomyces cerevisiae cell wall. J Cell Biol 139(1):75-93 PMID:9314530
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Reinders A, et al. (1997) Structural analysis of the subunits of the trehalose-6-phosphate synthase/phosphatase complex in Saccharomyces cerevisiae and their function during heat shock. Mol Microbiol 24(4):687-95 PMID:9194697
    • SGD Paper
    • DOI full text
    • PubMed
  • Ribeiro MJ, et al. (1997) Trehalose synthesis is important for the acquisition of thermotolerance in Schizosaccharomyces pombe. Mol Microbiol 25(3):571-81 PMID:9302019
    • SGD Paper
    • DOI full text
    • PubMed
  • De Virgilio C, et al. (1996) SPR28, a sixth member of the septin gene family in Saccharomyces cerevisiae that is expressed specifically in sporulating cells. Microbiology (Reading) 142 ( Pt 10):2897-905 PMID:8885406
    • SGD Paper
    • DOI full text
    • PubMed
  • Longtine MS, et al. (1996) The septins: roles in cytokinesis and other processes. Curr Opin Cell Biol 8(1):106-19 PMID:8791410
    • SGD Paper
    • DOI full text
    • PubMed
  • Cvrcková F, et al. (1995) Ste20-like protein kinases are required for normal localization of cell growth and for cytokinesis in budding yeast. Genes Dev 9(15):1817-30 PMID:7649470
    • SGD Paper
    • DOI full text
    • PubMed
  • Simon MN, et al. (1995) Role for the Rho-family GTPase Cdc42 in yeast mating-pheromone signal pathway. Nature 376(6542):702-5 PMID:7651520
    • SGD Paper
    • DOI full text
    • PubMed
  • Stevenson BJ, et al. (1995) Mutation of RGA1, which encodes a putative GTPase-activating protein for the polarity-establishment protein Cdc42p, activates the pheromone-response pathway in the yeast Saccharomyces cerevisiae. Genes Dev 9(23):2949-63 PMID:7498791
    • SGD Paper
    • DOI full text
    • PubMed
  • de Virgilio C and Pringle JR (1995) S. cerevisiae two-hybrid interactor with the C-terminus of Cdc12p. Unpublished
    • SGD Paper
  • De Virgilio C, et al. (1994) The role of trehalose synthesis for the acquisition of thermotolerance in yeast. I. Genetic evidence that trehalose is a thermoprotectant. Eur J Biochem 219(1-2):179-86 PMID:8306984
    • SGD Paper
    • DOI full text
    • PubMed
  • Hottiger T, et al. (1994) The role of trehalose synthesis for the acquisition of thermotolerance in yeast. II. Physiological concentrations of trehalose increase the thermal stability of proteins in vitro. Eur J Biochem 219(1-2):187-93 PMID:8306985
    • SGD Paper
    • DOI full text
    • PubMed
  • De Virgilio C, et al. (1993) Disruption of TPS2, the gene encoding the 100-kDa subunit of the trehalose-6-phosphate synthase/phosphatase complex in Saccharomyces cerevisiae, causes accumulation of trehalose-6-phosphate and loss of trehalose-6-phosphate phosphatase activity. Eur J Biochem 212(2):315-23 PMID:8444170
    • SGD Paper
    • DOI full text
    • PubMed
  • De Virgilio C, et al. (1992) Cloning and disruption of a gene required for growth on acetate but not on ethanol: the acetyl-coenzyme A synthetase gene of Saccharomyces cerevisiae. Yeast 8(12):1043-51 PMID:1363452
    • SGD Paper
    • DOI full text
    • PubMed
  • Hottiger T, et al. (1992) The 70-kilodalton heat-shock proteins of the SSA subfamily negatively modulate heat-shock-induced accumulation of trehalose and promote recovery from heat stress in the yeast, Saccharomyces cerevisiae. Eur J Biochem 210(1):125-32 PMID:1446665
    • SGD Paper
    • DOI full text
    • PubMed
  • De Virgilio C, et al. (1991) Acquisition of thermotolerance in Saccharomyces cerevisiae without heat shock protein hsp 104 and in the absence of protein synthesis. FEBS Lett 288(1-2):86-90 PMID:1831771
    • SGD Paper
    • DOI full text
    • PubMed
  • De Virgilio C, et al. (1991) A method to study the rapid phosphorylation-related modulation of neutral trehalase activity by temperature shifts in yeast. FEBS Lett 291(2):355-8 PMID:1936286
    • SGD Paper
    • DOI full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top