Koster CC, et al. (2024) Long-read direct RNA sequencing of the mitochondrial transcriptome of Saccharomyces cerevisiae reveals condition-dependent intron abundance. Yeast 41(4):256-278 PMID:37642136
van den Broek M, et al. (2024) Draft genome sequence of the Saccharomyces cerevisiae SpyCas9 expressing strain IMX2600, a laboratory and platform strain from the CEN.PK lineage for cell-factory research. Microbiol Resour Announc 13(2):e0055023 PMID:38132639
Ridder MD, et al. (2023) Proteome Dynamics During Transition From Exponential to Stationary Phase Under Aerobic and Anaerobic Conditions in Yeast. Mol Cell Proteomics 22(6):100552 PMID:37076048
den Ridder M, et al. (2022) A systematic evaluation of yeast sample preparation protocols for spectral identifications, proteome coverage and post-isolation modifications. J Proteomics 261:104576 PMID:35351659
Postma ED, et al. (2021) A supernumerary designer chromosome for modular in vivo pathway assembly in Saccharomyces cerevisiae. Nucleic Acids Res 49(3):1769-1783 PMID:33423048
Randazzo P, et al. (2021) gEL DNA: A Cloning- and Polymerase Chain Reaction-Free Method for CRISPR-Based Multiplexed Genome Editing. CRISPR J 4(6):896-913 PMID:33900846
Boonekamp FJ, et al. (2020) Design and Experimental Evaluation of a Minimal, Innocuous Watermarking Strategy to Distinguish Near-Identical DNA and RNA Sequences. ACS Synth Biol 9(6):1361-1375 PMID:32413257
Garcia-Albornoz M, et al. (2020) A proteome-integrated, carbon source dependent genetic regulatory network in Saccharomyces cerevisiae. Mol Omics 16(1):59-72 PMID:31868867
Hakkaart X, et al. (2020) Physiological responses of Saccharomyces cerevisiae to industrially relevant conditions: Slow growth, low pH, and high CO2 levels. Biotechnol Bioeng 117(3):721-735 PMID:31654410
Wijsman M, et al. (2019) A toolkit for rapid CRISPR-SpCas9 assisted construction of hexose-transport-deficient Saccharomyces cerevisiae strains. FEMS Yeast Res 19(1) PMID:30285096
Boonekamp FJ, et al. (2018) The Genetic Makeup and Expression of the Glycolytic and Fermentative Pathways Are Highly Conserved Within the Saccharomyces Genus. Front Genet 9:504 PMID:30505317
Mans R, et al. (2018) A protocol for introduction of multiple genetic modifications in Saccharomyces cerevisiae using CRISPR/Cas9. FEMS Yeast Res 18(7) PMID:29860374
Perez-Samper G, et al. (2018) The Crabtree Effect Shapes the Saccharomyces cerevisiae Lag Phase during the Switch between Different Carbon Sources. mBio 9(5) PMID:30377274
Swiat MA, et al. (2017) FnCpf1: a novel and efficient genome editing tool for Saccharomyces cerevisiae. Nucleic Acids Res 45(21):12585-12598 PMID:29106617
Kuijpers NG, et al. (2016) Pathway swapping: Toward modular engineering of essential cellular processes. Proc Natl Acad Sci U S A 113(52):15060-15065 PMID:27956602
Vos T, et al. (2016) Maintenance-energy requirements and robustness of Saccharomyces cerevisiae at aerobic near-zero specific growth rates. Microb Cell Fact 15(1):111 PMID:27317316
Bisschops MM, et al. (2015) Oxygen availability strongly affects chronological lifespan and thermotolerance in batch cultures of Saccharomyces cerevisiae. Microb Cell 2(11):429-444 PMID:28357268
Ercan O, et al. (2015) Physiological and Transcriptional Responses of Different Industrial Microbes at Near-Zero Specific Growth Rates. Appl Environ Microbiol 81(17):5662-70 PMID:26048933
Mans R, et al. (2015) CRISPR/Cas9: a molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae. FEMS Yeast Res 15(2) PMID:25743786
Solis-Escalante D, et al. (2015) The genome sequence of the popular hexose-transport-deficient Saccharomyces cerevisiae strain EBY.VW4000 reveals LoxP/Cre-induced translocations and gene loss. FEMS Yeast Res 15(2) PMID:25673752
Solis-Escalante D, et al. (2015) A Minimal Set of Glycolytic Genes Reveals Strong Redundancies in Saccharomyces cerevisiae Central Metabolism. Eukaryot Cell 14(8):804-16 PMID:26071034
Vos T, et al. (2015) Growth-rate dependency of de novo resveratrol production in chemostat cultures of an engineered Saccharomyces cerevisiae strain. Microb Cell Fact 14:133 PMID:26369953
Binai NA, et al. (2014) Proteome adaptation of Saccharomyces cerevisiae to severe calorie restriction in Retentostat cultures. J Proteome Res 13(8):3542-53 PMID:25000127
Bisschops MM, et al. (2014) To divide or not to divide: a key role of Rim15 in calorie-restricted yeast cultures. Biochim Biophys Acta 1843(5):1020-30 PMID:24487068
Hebly M, et al. (2014) Physiological and transcriptional responses of anaerobic chemostat cultures of Saccharomyces cerevisiae subjected to diurnal temperature cycles. Appl Environ Microbiol 80(14):4433-49 PMID:24814792
Solis-Escalante D, et al. (2014) Efficient simultaneous excision of multiple selectable marker cassettes using I-SceI-induced double-strand DNA breaks in Saccharomyces cerevisiae. FEMS Yeast Res 14(5):741-54 PMID:24833416
Kuijpers NG, et al. (2013) One-step assembly and targeted integration of multigene constructs assisted by the I-SceI meganuclease in Saccharomyces cerevisiae. FEMS Yeast Res 13(8):769-81 PMID:24028550
Kuijpers NG, et al. (2013) A versatile, efficient strategy for assembly of multi-fragment expression vectors in Saccharomyces cerevisiae using 60 bp synthetic recombination sequences. Microb Cell Fact 12:47 PMID:23663359
Mendes F, et al. (2013) Transcriptome-based characterization of interactions between Saccharomyces cerevisiae and Lactobacillus delbrueckii subsp. bulgaricus in lactose-grown chemostat cocultures. Appl Environ Microbiol 79(19):5949-61 PMID:23872557
Solis-Escalante D, et al. (2013) amdSYM, a new dominant recyclable marker cassette for Saccharomyces cerevisiae. FEMS Yeast Res 13(1):126-39 PMID:23253382
Cruz LA, et al. (2012) Similar temperature dependencies of glycolytic enzymes: an evolutionary adaptation to temperature dynamics? BMC Syst Biol 6:151 PMID:23216813
Nijkamp JF, et al. (2012) De novo sequencing, assembly and analysis of the genome of the laboratory strain Saccharomyces cerevisiae CEN.PK113-7D, a model for modern industrial biotechnology. Microb Cell Fact 11:36 PMID:22448915
Boender LG, et al. (2011) Extreme calorie restriction and energy source starvation in Saccharomyces cerevisiae represent distinct physiological states. Biochim Biophys Acta 1813(12):2133-44 PMID:21803078
Boender LG, et al. (2011) Cellular responses of Saccharomyces cerevisiae at near-zero growth rates: transcriptome analysis of anaerobic retentostat cultures. FEMS Yeast Res 11(8):603-20 PMID:22093745
Helbig AO, et al. (2011) The diversity of protein turnover and abundance under nitrogen-limited steady-state conditions in Saccharomyces cerevisiae. Mol Biosyst 7(12):3316-26 PMID:21984188
Canelas AB, et al. (2010) Integrated multilaboratory systems biology reveals differences in protein metabolism between two reference yeast strains. Nat Commun 1:145 PMID:21266995
van Eunen K, et al. (2010) Measuring enzyme activities under standardized in vivo-like conditions for systems biology. FEBS J 277(3):749-60 PMID:20067525
Daran-Lapujade P, et al. (2009) An atypical PMR2 locus is responsible for hypersensitivity to sodium and lithium cations in the laboratory strain Saccharomyces cerevisiae CEN.PK113-7D. FEMS Yeast Res 9(5):789-92 PMID:19519766
Hazelwood LA, et al. (2009) Identity of the growth-limiting nutrient strongly affects storage carbohydrate accumulation in anaerobic chemostat cultures of Saccharomyces cerevisiae. Appl Environ Microbiol 75(21):6876-85 PMID:19734328
Helbig AO, et al. (2009) A three-way proteomics strategy allows differential analysis of yeast mitochondrial membrane protein complexes under anaerobic and aerobic conditions. Proteomics 9(20):4787-98 PMID:19750512
van den Brink J, et al. (2009) Energetic limits to metabolic flexibility: responses of Saccharomyces cerevisiae to glucose-galactose transitions. Microbiology (Reading) 155(Pt 4):1340-1350 PMID:19332835
Cipollina C, et al. (2008) Saccharomyces cerevisiae SFP1: at the crossroads of central metabolism and ribosome biogenesis. Microbiology (Reading) 154(Pt 6):1686-1699 PMID:18524923
Cipollina C, et al. (2008) Revisiting the role of yeast Sfp1 in ribosome biogenesis and cell size control: a chemostat study. Microbiology (Reading) 154(Pt 1):337-346 PMID:18174152
Fazio A, et al. (2008) Transcription factor control of growth rate dependent genes in Saccharomyces cerevisiae: a three factor design. BMC Genomics 9:341 PMID:18638364
van den Brink J, et al. (2008) New insights into the Saccharomyces cerevisiae fermentation switch: dynamic transcriptional response to anaerobicity and glucose-excess. BMC Genomics 9:100 PMID:18304306
van den Brink J, et al. (2008) Dynamics of glycolytic regulation during adaptation of Saccharomyces cerevisiae to fermentative metabolism. Appl Environ Microbiol 74(18):5710-23 PMID:18641162
Daran-Lapujade P, et al. (2007) The fluxes through glycolytic enzymes in Saccharomyces cerevisiae are predominantly regulated at posttranscriptional levels. Proc Natl Acad Sci U S A 104(40):15753-8 PMID:17898166
De Nicola R, et al. (2007) Physiological and transcriptional responses of Saccharomyces cerevisiae to zinc limitation in chemostat cultures. Appl Environ Microbiol 73(23):7680-92 PMID:17933919
Tai SL, et al. (2007) Control of the glycolytic flux in Saccharomyces cerevisiae grown at low temperature: a multi-level analysis in anaerobic chemostat cultures. J Biol Chem 282(14):10243-51 PMID:17251183
Tai SL, et al. (2007) Acclimation of Saccharomyces cerevisiae to low temperature: a chemostat-based transcriptome analysis. Mol Biol Cell 18(12):5100-12 PMID:17928405
de Groot MJL, et al. (2007) Quantitative proteomics and transcriptomics of anaerobic and aerobic yeast cultures reveals post-transcriptional regulation of key cellular processes. Microbiology (Reading) 153(Pt 11):3864-3878 PMID:17975095
Kresnowati MT, et al. (2006) When transcriptome meets metabolome: fast cellular responses of yeast to sudden relief of glucose limitation. Mol Syst Biol 2:49 PMID:16969341
Jansen MLA, et al. (2005) Prolonged selection in aerobic, glucose-limited chemostat cultures of Saccharomyces cerevisiae causes a partial loss of glycolytic capacity. Microbiology (Reading) 151(Pt 5):1657-1669 PMID:15870473
Tai SL, et al. (2005) Two-dimensional transcriptome analysis in chemostat cultures. Combinatorial effects of oxygen availability and macronutrient limitation in Saccharomyces cerevisiae. J Biol Chem 280(1):437-47 PMID:15496405
Daran-Lapujade P, et al. (2004) Role of transcriptional regulation in controlling fluxes in central carbon metabolism of Saccharomyces cerevisiae. A chemostat culture study. J Biol Chem 279(10):9125-38 PMID:14630934
Jansen ML, et al. (2004) Prolonged maltose-limited cultivation of Saccharomyces cerevisiae selects for cells with improved maltose affinity and hypersensitivity. Appl Environ Microbiol 70(4):1956-63 PMID:15066785
Daran-Lapujade P, et al. (2003) Comparative genotyping of the Saccharomyces cerevisiae laboratory strains S288C and CEN.PK113-7D using oligonucleotide microarrays. FEMS Yeast Res 4(3):259-69 PMID:14654430
Piper MD, et al. (2002) Reproducibility of oligonucleotide microarray transcriptome analyses. An interlaboratory comparison using chemostat cultures of Saccharomyces cerevisiae. J Biol Chem 277(40):37001-8 PMID:12121991