AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Culotta VC
  • References

Author: Culotta VC


References 86 references


No citations for this author.

Download References (.nbib)

  • Broxton CN, et al. (2018) A role for Candida albicans superoxide dismutase enzymes in glucose signaling. Biochem Biophys Res Commun 495(1):814-820 PMID:29154829
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Liu NN, et al. (2018) Intersection of phosphate transport, oxidative stress and TOR signalling in Candida albicans virulence. PLoS Pathog 14(7):e1007076 PMID:30059535
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Baron JA, et al. (2015) Cu/Zn superoxide dismutase and the proton ATPase Pma1p of Saccharomyces cerevisiae. Biochem Biophys Res Commun 462(3):251-6 PMID:25956063
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gleason JE, et al. (2014) Species-specific activation of Cu/Zn SOD by its CCS copper chaperone in the pathogenic yeast Candida albicans. J Biol Inorg Chem 19(4-5):595-603 PMID:24043471
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Aguirre JD, et al. (2013) A manganese-rich environment supports superoxide dismutase activity in a Lyme disease pathogen, Borrelia burgdorferi. J Biol Chem 288(12):8468-8478 PMID:23376276
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Baron JA, et al. (2013) Superoxide triggers an acid burst in Saccharomyces cerevisiae to condition the environment of glucose-starved cells. J Biol Chem 288(7):4557-66 PMID:23281478
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Culotta VC and Daly MJ (2013) Manganese complexes: diverse metabolic routes to oxidative stress resistance in prokaryotes and yeast. Antioxid Redox Signal 19(9):933-44 PMID:23249283
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Reddi AR and Culotta VC (2013) SOD1 integrates signals from oxygen and glucose to repress respiration. Cell 152(1-2):224-35 PMID:23332757
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Leitch JM, et al. (2012) Post-translational modification of Cu/Zn superoxide dismutase under anaerobic conditions. Biochemistry 51(2):677-85 PMID:22148750
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rosenfeld L and Culotta VC (2012) Phosphate disruption and metal toxicity in Saccharomyces cerevisiae: effects of RAD23 and the histone chaperone HPC2. Biochem Biophys Res Commun 418(2):414-9 PMID:22281500
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gleason JE, et al. (2011) Analysis of hypoxia and hypoxia-like states through metabolite profiling. PLoS One 6(9):e24741 PMID:21931840
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gross DP, et al. (2011) Mitochondrial Ccs1 contains a structural disulfide bond crucial for the import of this unconventional substrate by the disulfide relay system. Mol Biol Cell 22(20):3758-67 PMID:21865601
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Reddi AR and Culotta VC (2011) Regulation of manganese antioxidants by nutrient sensing pathways in Saccharomyces cerevisiae. Genetics 189(4):1261-70 PMID:21926297
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • McNaughton RL, et al. (2010) Probing in vivo Mn2+ speciation and oxidative stress resistance in yeast cells with electron-nuclear double resonance spectroscopy. Proc Natl Acad Sci U S A 107(35):15335-9 PMID:20702768
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rosenfeld L, et al. (2010) The effect of phosphate accumulation on metal ion homeostasis in Saccharomyces cerevisiae. J Biol Inorg Chem 15(7):1051-62 PMID:20429018
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Seetharaman SV, et al. (2010) Disrupted zinc-binding sites in structures of pathogenic SOD1 variants D124V and H80R. Biochemistry 49(27):5714-25 PMID:20515040
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Jensen LT, et al. (2009) Down-regulation of a manganese transporter in the face of metal toxicity. Mol Biol Cell 20(12):2810-9 PMID:19369420
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Leitch JM, et al. (2009) The right to choose: multiple pathways for activating copper,zinc superoxide dismutase. J Biol Chem 284(37):24679-83 PMID:19586921
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Leitch JM, et al. (2009) Activation of Cu,Zn-superoxide dismutase in the absence of oxygen and the copper chaperone CCS. J Biol Chem 284(33):21863-21871 PMID:19542232
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Naranuntarat A, et al. (2009) The interaction of mitochondrial iron with manganese superoxide dismutase. J Biol Chem 284(34):22633-40 PMID:19561359
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Nilsson R, et al. (2009) Discovery of genes essential for heme biosynthesis through large-scale gene expression analysis. Cell Metab 10(2):119-30 PMID:19656490
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Reddi AR, et al. (2009) The overlapping roles of manganese and Cu/Zn SOD in oxidative stress protection. Free Radic Biol Med 46(2):154-62 PMID:18973803
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Reddi AR, et al. (2009) Manganese homeostasis in Saccharomyces cerevisiae. Chem Rev 109(10):4722-32 PMID:19705825
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kirby K, et al. (2008) Instability of superoxide dismutase 1 of Drosophila in mutants deficient for its cognate copper chaperone. J Biol Chem 283(51):35393-401 PMID:18948262
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Watanabe S, et al. (2007) Increased affinity for copper mediated by cysteine 111 in forms of mutant superoxide dismutase 1 linked to amyotrophic lateral sclerosis. Free Radic Biol Med 42(10):1534-42 PMID:17448900
    • SGD Paper
    • DOI full text
    • PubMed
  • Yang M, et al. (2006) The effects of mitochondrial iron homeostasis on cofactor specificity of superoxide dismutase 2. EMBO J 25(8):1775-83 PMID:16601688
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Culotta VC, et al. (2005) Manganese transport and trafficking: lessons learned from Saccharomyces cerevisiae. Eukaryot Cell 4(7):1159-65 PMID:16002642
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Jensen LT and Culotta VC (2005) Activation of CuZn superoxide dismutases from Caenorhabditis elegans does not require the copper chaperone CCS. J Biol Chem 280(50):41373-9 PMID:16234242
    • SGD Paper
    • DOI full text
    • PubMed
  • Luk E, et al. (2005) Manganese activation of superoxide dismutase 2 in the mitochondria of Saccharomyces cerevisiae. J Biol Chem 280(24):22715-20 PMID:15851472
    • SGD Paper
    • DOI full text
    • PubMed
  • Outten CE, et al. (2005) Cellular factors required for protection from hyperoxia toxicity in Saccharomyces cerevisiae. Biochem J 388(Pt 1):93-101 PMID:15641941
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yang M, et al. (2005) Manganese toxicity and Saccharomyces cerevisiae Mam3p, a member of the ACDP (ancient conserved domain protein) family. Biochem J 386(Pt 3):479-87 PMID:15498024
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Carroll MC, et al. (2004) Mechanisms for activating Cu- and Zn-containing superoxide dismutase in the absence of the CCS Cu chaperone. Proc Natl Acad Sci U S A 101(16):5964-9 PMID:15069187
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Jensen LT, et al. (2004) Mutations in Saccharomyces cerevisiae iron-sulfur cluster assembly genes and oxidative stress relevant to Cu,Zn superoxide dismutase. J Biol Chem 279(29):29938-43 PMID:15107423
    • SGD Paper
    • DOI full text
    • PubMed
  • Outten CE and Culotta VC (2004) Alternative start sites in the Saccharomyces cerevisiae GLR1 gene are responsible for mitochondrial and cytosolic isoforms of glutathione reductase. J Biol Chem 279(9):7785-91 PMID:14672937
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • El Meskini R, et al. (2003) Supplying copper to the cuproenzyme peptidylglycine alpha-amidating monooxygenase. J Biol Chem 278(14):12278-84 PMID:12529325
    • SGD Paper
    • DOI full text
    • PubMed
  • Field LS, et al. (2003) Factors controlling the uptake of yeast copper/zinc superoxide dismutase into mitochondria. J Biol Chem 278(30):28052-9 PMID:12748182
    • SGD Paper
    • DOI full text
    • PubMed
  • Jensen LT, et al. (2003) The Saccharomyces cerevisiae high affinity phosphate transporter encoded by PHO84 also functions in manganese homeostasis. J Biol Chem 278(43):42036-40 PMID:12923174
    • SGD Paper
    • DOI full text
    • PubMed
  • Luk E, et al. (2003) The many highways for intracellular trafficking of metals. J Biol Inorg Chem 8(8):803-9 PMID:14517615
    • SGD Paper
    • DOI full text
    • PubMed
  • Luk E, et al. (2003) Manganese activation of superoxide dismutase 2 in Saccharomyces cerevisiae requires MTM1, a member of the mitochondrial carrier family. Proc Natl Acad Sci U S A 100(18):10353-7 PMID:12890866
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Outten CE and Culotta VC (2003) A novel NADH kinase is the mitochondrial source of NADPH in Saccharomyces cerevisiae. EMBO J 22(9):2015-24 PMID:12727869
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Field LS, et al. (2002) Copper chaperones: personal escorts for metal ions. J Bioenerg Biomembr 34(5):373-9 PMID:12539964
    • SGD Paper
    • DOI full text
    • PubMed
  • I Bannon D, et al. (2002) Uptake of lead and iron by divalent metal transporter 1 in yeast and mammalian cells. Biochem Biophys Res Commun 295(4):978-84 PMID:12127992
    • SGD Paper
    • DOI full text
    • PubMed
  • Jensen LT and Culotta VC (2002) Regulation of Saccharomyces cerevisiae FET4 by oxygen and iron. J Mol Biol 318(2):251-60 PMID:12051835
    • SGD Paper
    • DOI full text
    • PubMed
  • Lin SJ, et al. (2002) Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature 418(6895):344-8 PMID:12124627
    • SGD Paper
    • DOI full text
    • PubMed
    • Reference supplement
    • Reference supplement
  • Portnoy ME, et al. (2002) The distinct methods by which manganese and iron regulate the Nramp transporters in yeast. Biochem J 362(Pt 1):119-24 PMID:11829747
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sturtz LA and Culotta VC (2002) Superoxide dismutase null mutants of baker's yeast, Saccharomyces cerevisiae. Methods Enzymol 349:167-72 PMID:11912906
    • SGD Paper
    • DOI full text
    • PubMed
  • Luk EE and Culotta VC (2001) Manganese superoxide dismutase in Saccharomyces cerevisiae acquires its metal co-factor through a pathway involving the Nramp metal transporter, Smf2p. J Biol Chem 276(50):47556-62 PMID:11602606
    • SGD Paper
    • DOI full text
    • PubMed
  • Portnoy ME, et al. (2001) Metal transporters that contribute copper to metallochaperones in Saccharomyces cerevisiae. Mol Genet Genomics 265(5):873-82 PMID:11523804
    • SGD Paper
    • DOI full text
    • PubMed
  • Sturtz LA, et al. (2001) A fraction of yeast Cu,Zn-superoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria. A physiological role for SOD1 in guarding against mitochondrial oxidative damage. J Biol Chem 276(41):38084-9 PMID:11500508
    • SGD Paper
    • DOI full text
    • PubMed
  • Culotta VC (2000) Manganese transport in microorganisms. Met Ions Biol Syst 37:35-56 PMID:10693130
    • SGD Paper
    • PubMed
  • Culotta VC (2000) Superoxide dismutase, oxidative stress, and cell metabolism. Curr Top Cell Regul 36:117-32 PMID:10842749
    • SGD Paper
    • DOI full text
    • PubMed
  • Jensen LT and Culotta VC (2000) Role of Saccharomyces cerevisiae ISA1 and ISA2 in iron homeostasis. Mol Cell Biol 20(11):3918-27 PMID:10805735
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • O'Halloran TV and Culotta VC (2000) Metallochaperones, an intracellular shuttle service for metal ions. J Biol Chem 275(33):25057-60 PMID:10816601
    • SGD Paper
    • DOI full text
    • PubMed
  • Portnoy ME, et al. (2000) Saccharomyces cerevisiae expresses three functionally distinct homologues of the nramp family of metal transporters. Mol Cell Biol 20(21):7893-902 PMID:11027260
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Schmidt PJ, et al. (2000) Copper activation of superoxide dismutase 1 (SOD1) in vivo. Role for protein-protein interactions with the copper chaperone for SOD1. J Biol Chem 275(43):33771-6 PMID:10944535
    • SGD Paper
    • DOI full text
    • PubMed
  • Wong PC, et al. (2000) Copper chaperone for superoxide dismutase is essential to activate mammalian Cu/Zn superoxide dismutase. Proc Natl Acad Sci U S A 97(6):2886-91 PMID:10694572
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Corson LB, et al. (1999) Oxidative stress and iron are implicated in fragmenting vacuoles of Saccharomyces cerevisiae lacking Cu,Zn-superoxide dismutase. J Biol Chem 274(39):27590-6 PMID:10488097
    • SGD Paper
    • DOI full text
    • PubMed
  • Culotta VC, et al. (1999) Intracellular pathways of copper trafficking in yeast and humans. Adv Exp Med Biol 448:247-54 PMID:10079832
    • SGD Paper
    • DOI full text
    • PubMed
  • Garland SA, et al. (1999) Saccharomyces cerevisiae ISU1 and ISU2: members of a well-conserved gene family for iron-sulfur cluster assembly. J Mol Biol 294(4):897-907 PMID:10588895
    • SGD Paper
    • DOI full text
    • PubMed
  • Lamb AL, et al. (1999) Crystal structure of the copper chaperone for superoxide dismutase. Nat Struct Biol 6(8):724-9 PMID:10426947
    • SGD Paper
    • DOI full text
    • PubMed
  • Liu XF and Culotta VC (1999) Mutational analysis of Saccharomyces cerevisiae Smf1p, a member of the Nramp family of metal transporters. J Mol Biol 289(4):885-91 PMID:10369769
    • SGD Paper
    • DOI full text
    • PubMed
  • Liu XF and Culotta VC (1999) Post-translation control of Nramp metal transport in yeast. Role of metal ions and the BSD2 gene. J Biol Chem 274(8):4863-8 PMID:9988727
    • SGD Paper
    • DOI full text
    • PubMed
  • Portnoy ME, et al. (1999) Structure-function analyses of the ATX1 metallochaperone. J Biol Chem 274(21):15041-5 PMID:10329707
    • SGD Paper
    • DOI full text
    • PubMed
  • Rae TD, et al. (1999) Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science 284(5415):805-8 PMID:10221913
    • SGD Paper
    • DOI full text
    • PubMed
  • Schmidt PJ, et al. (1999) A gain of superoxide dismutase (SOD) activity obtained with CCS, the copper metallochaperone for SOD1. J Biol Chem 274(52):36952-6 PMID:10601249
    • SGD Paper
    • DOI full text
    • PubMed
  • Schmidt PJ, et al. (1999) Multiple protein domains contribute to the action of the copper chaperone for superoxide dismutase. J Biol Chem 274(34):23719-25 PMID:10446130
    • SGD Paper
    • DOI full text
    • PubMed
  • Corson LB, et al. (1998) Chaperone-facilitated copper binding is a property common to several classes of familial amyotrophic lateral sclerosis-linked superoxide dismutase mutants. Proc Natl Acad Sci U S A 95(11):6361-6 PMID:9600970
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Himelblau E, et al. (1998) Identification of a functional homolog of the yeast copper homeostasis gene ATX1 from Arabidopsis. Plant Physiol 117(4):1227-34 PMID:9701579
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Strain J, et al. (1998) Suppressors of superoxide dismutase (SOD1) deficiency in Saccharomyces cerevisiae. Identification of proteins predicted to mediate iron-sulfur cluster assembly. J Biol Chem 273(47):31138-44 PMID:9813017
    • SGD Paper
    • DOI full text
    • PubMed
  • Culotta VC, et al. (1997) The copper chaperone for superoxide dismutase. J Biol Chem 272(38):23469-72 PMID:9295278
    • SGD Paper
    • DOI full text
    • PubMed
  • Klomp LW, et al. (1997) Identification and functional expression of HAH1, a novel human gene involved in copper homeostasis. J Biol Chem 272(14):9221-6 PMID:9083055
    • SGD Paper
    • DOI full text
    • PubMed
  • Lin SJ, et al. (1997) A role for the Saccharomyces cerevisiae ATX1 gene in copper trafficking and iron transport. J Biol Chem 272(14):9215-20 PMID:9083054
    • SGD Paper
    • PubMed
  • Liu XF, et al. (1997) Negative control of heavy metal uptake by the Saccharomyces cerevisiae BSD2 gene. J Biol Chem 272(18):11763-9 PMID:9115231
    • SGD Paper
    • DOI full text
    • PubMed
  • Pufahl RA, et al. (1997) Metal ion chaperone function of the soluble Cu(I) receptor Atx1. Science 278(5339):853-6 PMID:9346482
    • SGD Paper
    • DOI full text
    • PubMed
  • Jensen LT, et al. (1996) Enhanced effectiveness of copper ion buffering by CUP1 metallothionein compared with CRS5 metallothionein in Saccharomyces cerevisiae. J Biol Chem 271(31):18514-9 PMID:8702498
    • SGD Paper
    • DOI full text
    • PubMed
  • Lapinskas PJ, et al. (1996) The role of the Saccharomyces cerevisiae CCC1 gene in the homeostasis of manganese ions. Mol Microbiol 21(3):519-28 PMID:8866476
    • SGD Paper
    • DOI full text
    • PubMed
  • Lin SJ and Culotta VC (1996) Suppression of oxidative damage by Saccharomyces cerevisiae ATX2, which encodes a manganese-trafficking protein that localizes to Golgi-like vesicles. Mol Cell Biol 16(11):6303-12 PMID:8887660
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Slekar KH, et al. (1996) The yeast copper/zinc superoxide dismutase and the pentose phosphate pathway play overlapping roles in oxidative stress protection. J Biol Chem 271(46):28831-6 PMID:8910528
    • SGD Paper
    • DOI full text
    • PubMed
  • Strain J and Culotta VC (1996) Copper ions and the regulation of Saccharomyces cerevisiae metallothionein genes under aerobic and anaerobic conditions. Mol Gen Genet 251(2):139-45 PMID:8668123
    • SGD Paper
    • DOI full text
    • PubMed
  • Culotta VC, et al. (1995) A physiological role for Saccharomyces cerevisiae copper/zinc superoxide dismutase in copper buffering. J Biol Chem 270(50):29991-7 PMID:8530401
    • SGD Paper
    • DOI full text
    • PubMed
  • Lapinskas PJ, et al. (1995) Mutations in PMR1 suppress oxidative damage in yeast cells lacking superoxide dismutase. Mol Cell Biol 15(3):1382-8 PMID:7862131
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lin SJ and Culotta VC (1995) The ATX1 gene of Saccharomyces cerevisiae encodes a small metal homeostasis factor that protects cells against reactive oxygen toxicity. Proc Natl Acad Sci U S A 92(9):3784-8 PMID:7731983
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Culotta VC, et al. (1994) CRS5 encodes a metallothionein-like protein in Saccharomyces cerevisiae. J Biol Chem 269(41):25295-302 PMID:7929222
    • SGD Paper
    • PubMed
  • Liu XF and Culotta VC (1994) The requirement for yeast superoxide dismutase is bypassed through mutations in BSD2, a novel metal homeostasis gene. Mol Cell Biol 14(11):7037-45 PMID:7935419
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Liu XF, et al. (1992) Yeast lacking superoxide dismutase. Isolation of genetic suppressors. J Biol Chem 267(26):18298-302 PMID:1526970
    • SGD Paper
    • PubMed
  • Culotta VC, et al. (1989) Copper and the ACE1 regulatory protein reversibly induce yeast metallothionein gene transcription in a mouse extract. Proc Natl Acad Sci U S A 86(21):8377-81 PMID:2682650
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top