AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Costa V
  • References

Author: Costa V


References 53 references


No citations for this author.

Download References (.nbib)

  • Ribeiro MO, et al. (2025) N88S seipin-related seipinopathy is a lipidopathy associated with loss of iron homeostasis. Cell Commun Signal 23(1):10 PMID:39773523
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Costa V and Teixeira V (2024) Vacuolar ATPase-mediated regulation of neutral lipid dynamics: Insights into lipid droplet homeostasis and stress response mechanisms. Biochim Biophys Acta Mol Cell Biol Lipids 1869(3):159465 PMID:38350538
    • SGD Paper
    • DOI full text
    • PubMed
  • Martins TS, et al. (2024) Sit4 Genetically Interacts with Vps27 to Regulate Mitochondrial Function and Lifespan in Saccharomyces cerevisiae. Cells 13(8) PMID:38667270
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sousa AD, et al. (2024) Prediction and biological analysis of yeast VDAC1 phosphorylation. Arch Biochem Biophys 753:109914 PMID:38290597
    • SGD Paper
    • DOI full text
    • PubMed
  • Leite AC, et al. (2023) Mitochondrial respiration promotes Cdc37-dependent stability of the Cdk1 homolog Cdc28. J Cell Sci 136(1) PMID:36594787
    • SGD Paper
    • DOI full text
    • PubMed
  • Leite AC, et al. (2023) The APC/C Activator Cdh1p Plays a Role in Mitochondrial Metabolic Remodelling in Yeast. Int J Mol Sci 24(4) PMID:36835555
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Leite AC, et al. (2023) Mitochondria and the cell cycle in budding yeast. Int J Biochem Cell Biol 161:106444 PMID:37419443
    • SGD Paper
    • DOI full text
    • PubMed
  • Martins TS, et al. (2023) Iron Limitation Restores Autophagy and Increases Lifespan in the Yeast Model of Niemann-Pick Type C1. Int J Mol Sci 24(7) PMID:37047194
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Leite AC, et al. (2022) Phosphoregulation of the ATP synthase beta subunit stimulates mitochondrial activity for G2/M progression. Adv Biol Regul 85:100905 PMID:36030696
    • SGD Paper
    • DOI full text
    • PubMed
  • Nogueira V, et al. (2022) Causative links between ER stress and oxidative damage in a yeast model of human N88S seipinopathy. Free Radic Biol Med 192:165-181 PMID:36126862
    • SGD Paper
    • DOI full text
    • PubMed
  • Teixeira V, et al. (2021) Target of Rapamycin Complex 1 (TORC1), Protein Kinase A (PKA) and Cytosolic pH Regulate a Transcriptional Circuit for Lipid Droplet Formation. Int J Mol Sci 22(16) PMID:34445723
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Pereira C, et al. (2020) Activation of SNF1/AMPK mediates the mitochondrial derepression, resistance to oxidative stress and increased lifespan of cells lacking the phosphatase Sit4p. Biochim Biophys Acta Mol Cell Res 1867(4):118660 PMID:31991152
    • SGD Paper
    • DOI full text
    • PubMed
  • Rego A, et al. (2020) Pkh1p-Ypk1p and Pkh1p-Sch9p Pathways Are Activated by Acetic Acid to Induce a Mitochondrial-Dependent Regulated Cell Death. Oxid Med Cell Longev 2020:7095078 PMID:32318242
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Araújo ARD, et al. (2018) Errors in protein synthesis increase the level of saturated fatty acids and affect the overall lipid profiles of yeast. PLoS One 13(8):e0202402 PMID:30148852
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Carmona-Gutierrez D, et al. (2018) Guidelines and recommendations on yeast cell death nomenclature. Microb Cell 5(1):4-31 PMID:29354647
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Martins TS, et al. (2018) The Hog1p kinase regulates Aft1p transcription factor to control iron accumulation. Biochim Biophys Acta Mol Cell Biol Lipids 1863(1):61-70 PMID:29032057
    • SGD Paper
    • DOI full text
    • PubMed
  • Martins TS, et al. (2018) Signaling pathways governing iron homeostasis in budding yeast. Mol Microbiol 109(4):422-432 PMID:29995317
    • SGD Paper
    • DOI full text
    • PubMed
  • Pereira C, et al. (2018) Sit4p-mediated dephosphorylation of Atp2p regulates ATP synthase activity and mitochondrial function. Biochim Biophys Acta Bioenerg 1859(8):591-601 PMID:29719209
    • SGD Paper
    • DOI full text
    • PubMed
  • Rego A, et al. (2018) Acetic acid induces Sch9p-dependent translocation of Isc1p from the endoplasmic reticulum into mitochondria. Biochim Biophys Acta Mol Cell Biol Lipids 1863(6):576-583 PMID:29496584
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Vilaça R, et al. (2018) The ceramide activated protein phosphatase Sit4 impairs sphingolipid dynamics, mitochondrial function and lifespan in a yeast model of Niemann-Pick type C1. Biochim Biophys Acta Mol Basis Dis 1864(1):79-88 PMID:28988886
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Oliveira AV, et al. (2017) Exploring the power of yeast to model aging and age-related neurodegenerative disorders. Biogerontology 18(1):3-34 PMID:27804052
    • SGD Paper
    • DOI full text
    • PubMed
  • Barbosa AD, et al. (2016) The ceramide-activated protein phosphatase Sit4p controls lifespan, mitochondrial function and cell cycle progression by regulating hexokinase 2 phosphorylation. Cell Cycle 15(12):1620-30 PMID:27163342
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Teixeira V and Costa V (2016) Unraveling the role of the Target of Rapamycin signaling in sphingolipid metabolism. Prog Lipid Res 61:109-33 PMID:26703187
    • SGD Paper
    • DOI full text
    • PubMed
  • Teixeira V, et al. (2016) Ceramide signaling targets the PP2A-like protein phosphatase Sit4p to impair vacuolar function, vesicular trafficking and autophagy in Isc1p deficient cells. Biochim Biophys Acta 1861(1):21-33 PMID:26477382
    • SGD Paper
    • DOI full text
    • PubMed
  • Carvalho S, et al. (2015) LiZIP3 is a cellular zinc transporter that mediates the tightly regulated import of zinc in Leishmania infantum parasites. Mol Microbiol 96(3):581-95 PMID:25644708
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mendes V, et al. (2015) Effect of myricetin, pyrogallol, and phloroglucinol on yeast resistance to oxidative stress. Oxid Med Cell Longev 2015:782504 PMID:26000072
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Pereira C, et al. (2015) A yeast model of the Parkinson's disease-associated protein Parkin. Exp Cell Res 333(1):73-9 PMID:25728007
    • SGD Paper
    • DOI full text
    • PubMed
  • Teixeira V, et al. (2015) Ceramide signalling impinges on Sit4p and Hog1p to promote mitochondrial fission and mitophagy in Isc1p-deficient cells. Cell Signal 27(9):1840-9 PMID:26079297
    • SGD Paper
    • DOI full text
    • PubMed
  • Rego A, et al. (2014) The yeast model system as a tool towards the understanding of apoptosis regulation by sphingolipids. FEMS Yeast Res 14(1):160-78 PMID:24103214
    • SGD Paper
    • DOI full text
    • PubMed
  • Vilaça R, et al. (2014) Sphingolipid signalling mediates mitochondrial dysfunctions and reduced chronological lifespan in the yeast model of Niemann-Pick type C1. Mol Microbiol 91(3):438-51 PMID:24286211
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bessa C, et al. (2013) Using yeast to uncover the regulation of protein kinase Cδ by ceramide. FEMS Yeast Res 13(7):700-5 PMID:23937324
    • SGD Paper
    • DOI full text
    • PubMed
  • Barbosa AD, et al. (2012) Activation of the Hog1p kinase in Isc1p-deficient yeast cells is associated with mitochondrial dysfunction, oxidative stress sensitivity and premature aging. Mech Ageing Dev 133(5):317-30 PMID:22445853
    • SGD Paper
    • DOI full text
    • PubMed
  • Costa V and Ludovico P (2012) Yeast as a platform to uncover ceramide-induced ancient cell death routines. Cell Cycle 11(1):14-5 PMID:22193035
    • SGD Paper
    • DOI full text
    • PubMed
  • Ludovico P, et al. (2012) Cellular models of aging. Oxid Med Cell Longev 2012:616128 PMID:23320129
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rego A, et al. (2012) Modulation of mitochondrial outer membrane permeabilization and apoptosis by ceramide metabolism. PLoS One 7(11):e48571 PMID:23226203
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Vilaça R, et al. (2012) Quercetin protects Saccharomyces cerevisiae against oxidative stress by inducing trehalose biosynthesis and the cell wall integrity pathway. PLoS One 7(9):e45494 PMID:23029052
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Barbosa AD, et al. (2011) Role for Sit4p-dependent mitochondrial dysfunction in mediating the shortened chronological lifespan and oxidative stress sensitivity of Isc1p-deficient cells. Mol Microbiol 81(2):515-27 PMID:21707788
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mannarino SC, et al. (2011) Requirement of glutathione for Sod1 activation during lifespan extension. Yeast 28(1):19-25 PMID:20737429
    • SGD Paper
    • DOI full text
    • PubMed
  • Mendes-Ferreira A, et al. (2010) Accumulation of non-superoxide anion reactive oxygen species mediates nitrogen-limited alcoholic fermentation by Saccharomyces cerevisiae. Appl Environ Microbiol 76(24):7918-24 PMID:20952643
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mesquita A, et al. (2010) Caloric restriction or catalase inactivation extends yeast chronological lifespan by inducing H2O2 and superoxide dismutase activity. Proc Natl Acad Sci U S A 107(34):15123-8 PMID:20696905
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Almeida T, et al. (2008) Isc1p plays a key role in hydrogen peroxide resistance and chronological lifespan through modulation of iron levels and apoptosis. Mol Biol Cell 19(3):865-76 PMID:18162582
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mannarino SC, et al. (2008) Glutathione is necessary to ensure benefits of calorie restriction during ageing in Saccharomyces cerevisiae. Mech Ageing Dev 129(12):700-5 PMID:18840459
    • SGD Paper
    • DOI full text
    • PubMed
  • Belinha I, et al. (2007) Quercetin increases oxidative stress resistance and longevity in Saccharomyces cerevisiae. J Agric Food Chem 55(6):2446-51 PMID:17323973
    • SGD Paper
    • DOI full text
    • PubMed
  • Costa V, et al. (2007) Protein oxidation, repair mechanisms and proteolysis in Saccharomyces cerevisiae. IUBMB Life 59(4-5):293-8 PMID:17505968
    • SGD Paper
    • DOI full text
    • PubMed
  • Cipolat S, et al. (2006) Mitochondrial rhomboid PARL regulates cytochrome c release during apoptosis via OPA1-dependent cristae remodeling. Cell 126(1):163-75 PMID:16839884
    • SGD Paper
    • DOI full text
    • PubMed
  • Marques M, et al. (2006) The Pep4p vacuolar proteinase contributes to the turnover of oxidized proteins but PEP4 overexpression is not sufficient to increase chronological lifespan in Saccharomyces cerevisiae. Microbiology (Reading) 152(Pt 12):3595-3605 PMID:17159212
    • SGD Paper
    • DOI full text
    • PubMed
  • Harris N, et al. (2005) Overexpressed Sod1p acts either to reduce or to increase the lifespans and stress resistance of yeast, depending on whether it is Cu(2+)-deficient or an active Cu,Zn-superoxide dismutase. Aging Cell 4(1):41-52 PMID:15659212
    • SGD Paper
    • DOI full text
    • PubMed
  • Harris N, et al. (2003) Mnsod overexpression extends the yeast chronological (G(0)) life span but acts independently of Sir2p histone deacetylase to shorten the replicative life span of dividing cells. Free Radic Biol Med 34(12):1599-606 PMID:12788479
    • SGD Paper
    • DOI full text
    • PubMed
  • Costa V and Moradas-Ferreira P (2001) Oxidative stress and signal transduction in Saccharomyces cerevisiae: insights into ageing, apoptosis and diseases. Mol Aspects Med 22(4-5):217-46 PMID:11679167
    • SGD Paper
    • DOI full text
    • PubMed
  • Moradas-Ferreira P and Costa V (2000) Adaptive response of the yeast Saccharomyces cerevisiae to reactive oxygen species: defences, damage and death. Redox Rep 5(5):277-85 PMID:11145102
    • SGD Paper
    • DOI full text
    • PubMed
  • Costa V, et al. (1997) Mitochondrial superoxide dismutase is essential for ethanol tolerance of Saccharomyces cerevisiae in the post-diauxic phase. Microbiology (Reading) 143 ( Pt 5):1649-1656 PMID:9168613
    • SGD Paper
    • DOI full text
    • PubMed
  • Moradas-Ferreira P, et al. (1996) The molecular defences against reactive oxygen species in yeast. Mol Microbiol 19(4):651-8 PMID:8820636
    • SGD Paper
    • DOI full text
    • PubMed
  • Costa V, et al. (1993) Acquisition of ethanol tolerance in Saccharomyces cerevisiae: the key role of the mitochondrial superoxide dismutase. Arch Biochem Biophys 300(2):608-14 PMID:8434941
    • SGD Paper
    • DOI full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top