Ďurovcová I, et al. (2021) Acute Exposure to Bisphenol A Causes Oxidative Stress Induction with Mitochondrial Origin in Saccharomyces cerevisiae Cells. J Fungi (Basel) 7(7) PMID:34356922
Durdíková K and Chovanec M (2017) Regulation of non-homologous end joining via post-translational modifications of components of the ligation step. Curr Genet 63(4):591-605 PMID:27915381
Mániková D, et al. (2014) Intracellular diagnostics: hunting for the mode of action of redox-modulating selenium compounds in selected model systems. Molecules 19(8):12258-79 PMID:25123189
Mániková D, et al. (2012) Selenium toxicity toward yeast as assessed by microarray analysis and deletion mutant library screen: a role for DNA repair. Chem Res Toxicol 25(8):1598-608 PMID:22747191
Ward TA, et al. (2012) Components of a Fanconi-like pathway control Pso2-independent DNA interstrand crosslink repair in yeast. PLoS Genet 8(8):e1002884 PMID:22912599
Mániková D, et al. (2010) Investigations on the role of base excision repair and non-homologous end-joining pathways in sodium selenite-induced toxicity and mutagenicity in Saccharomyces cerevisiae. Mutagenesis 25(2):155-62 PMID:19955329
Carter SD, et al. (2009) Nej1 recruits the Srs2 helicase to DNA double-strand breaks and supports repair by a single-strand annealing-like mechanism. Proc Natl Acad Sci U S A 106(29):12037-42 PMID:19571008
Letavayová L, et al. (2008) Rad52 has a role in the repair of sodium selenite-induced DNA damage in Saccharomyces cerevisiae. Mutat Res 652(2):198-203 PMID:18424227
Dudás A, et al. (2007) Further characterization of the role of Pso2 in the repair of DNA interstrand cross-link-associated double-strand breaks in Saccharomyces cerevisiae. Neoplasma 54(3):189-94 PMID:17447848
Letavayová L, et al. (2006) Relative contribution of homologous recombination and non-homologous end-joining to DNA double-strand break repair after oxidative stress in Saccharomyces cerevisiae. DNA Repair (Amst) 5(5):602-10 PMID:16515894
Brozmanová J, et al. (2004) How heterologously expressed Escherichia coli genes contribute to understanding DNA repair processes in Saccharomyces cerevisiae. Curr Genet 46(6):317-30 PMID:15614491
Dudásová Z, et al. (2004) Disruption of the RAD51 gene sensitizes S. cerevisiae cells to the toxic and mutagenic effects of hydrogen peroxide. Folia Microbiol (Praha) 49(3):259-64 PMID:15259765
Dudás A, et al. (2003) The Escherichia coli RecA protein complements recombination defective phenotype of the Saccharomyces cerevisiae rad52 mutant cells. Yeast 20(5):389-96 PMID:12673622
Skorvaga M, et al. (2003) Effect of expression of the Escherichia coli nth gene in Saccharomyces cerevisiae on the toxicity of ionizing radiation and hydrogen peroxide. Int J Radiat Biol 79(9):747-55 PMID:14703947
Brozmanová J, et al. (2001) Increased DNA double strand breakage is responsible for sensitivity of the pso3-1 mutant of Saccharomyces cerevisiae to hydrogen peroxide. Mutat Res 485(4):345-55 PMID:11585367
Slaninová M, et al. (1995) Expression of Escherichia coli recA and ada genes in Saccharomyces cerevisiae using a vector with geneticin resistance. Folia Microbiol (Praha) 40(3):257-62 PMID:8919931
Brozmanová J, et al. (1994) Expression of the E.coli ada gene in S.cerevisiae provides cellular resistance to N-methyl-N'-nitro-N-nitrosoguanidine in rad6 but not in rad52 mutants. Nucleic Acids Res 22(25):5717-22 PMID:7838727