AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Bolotin-Fukuhara M
  • References

Author: Bolotin-Fukuhara M


References 70 references


No citations for this author.

Download References (.nbib)

  • Bolotin-Fukuhara M (2017) Thirty years of the HAP2/3/4/5 complex. Biochim Biophys Acta Gene Regul Mech 1860(5):543-559 PMID:27989936
    • SGD Paper
    • DOI full text
    • PubMed
  • Boisnard S, et al. (2015) Efficient Mating-Type Switching in Candida glabrata Induces Cell Death. PLoS One 10(10):e0140990 PMID:26491872
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bolotin-Fukuhara M and Fairhead C (2014) Candida glabrata: a deadly companion? Yeast 31(8):279-88 PMID:24861573
    • SGD Paper
    • DOI full text
    • PubMed
  • Petryk N, et al. (2014) Functional study of the Hap4-like genes suggests that the key regulators of carbon metabolism HAP4 and oxidative stress response YAP1 in yeast diverged from a common ancestor. PLoS One 9(12):e112263 PMID:25479159
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gabaldón T, et al. (2013) Comparative genomics of emerging pathogens in the Candida glabrata clade. BMC Genomics 14:623 PMID:24034898
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Montanari A, et al. (2013) Analyzing the suppression of respiratory defects in the yeast model of human mitochondrial tRNA diseases. Gene 527(1):1-9 PMID:23727608
    • SGD Paper
    • DOI full text
    • PubMed
  • Bolotin-Fukuhara M, et al. (2010) Yeasts as a model for human diseases. FEMS Yeast Res 10(8):959-60 PMID:21054780
    • SGD Paper
    • DOI full text
    • PubMed
  • Rinaldi T, et al. (2010) Mitochondrial diseases and the role of the yeast models. FEMS Yeast Res 10(8):1006-22 PMID:20946356
    • SGD Paper
    • DOI full text
    • PubMed
  • Sybirna K, et al. (2010) A novel Hansenula polymorpha transcriptional factor HpHAP4-B, able to functionally replace the S. cerevisiae HAP4 gene, contains an additional bZip motif. Yeast 27(11):941-54 PMID:20602448
    • SGD Paper
    • DOI full text
    • PubMed
  • De Luca C, et al. (2009) Can yeast be used to study mitochondrial diseases? Biolistic tRNA mutants for the analysis of mechanisms and suppressors. Mitochondrion 9(6):408-17 PMID:19631764
    • SGD Paper
    • DOI full text
    • PubMed
  • Fang ZA, et al. (2009) Gene responses to oxygen availability in Kluyveromyces lactis: an insight on the evolution of the oxygen-responding system in yeast. PLoS One 4(10):e7561 PMID:19855843
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bao WG, et al. (2008) Oxygen-dependent transcriptional regulator Hap1p limits glucose uptake by repressing the expression of the major glucose transporter gene RAG1 in Kluyveromyces lactis. Eukaryot Cell 7(11):1895-905 PMID:18806211
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Eijssen LM, et al. (2008) A novel stepwise analysis procedure of genome-wide expression profiles identifies transcript signatures of thiamine genes as classifiers of mitochondrial mutants. Yeast 25(2):129-40 PMID:18081196
    • SGD Paper
    • DOI full text
    • PubMed
  • Montanari A, et al. (2008) Yeast as a model of human mitochondrial tRNA base substitutions: investigation of the molecular basis of respiratory defects. RNA 14(2):275-83 PMID:18065717
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Elati M, et al. (2007) LICORN: learning cooperative regulation networks from gene expression data. Bioinformatics 23(18):2407-14 PMID:17720703
    • SGD Paper
    • DOI full text
    • PubMed
  • Bussereau F, et al. (2006) The Kluyveromyces lactis repertoire of transcriptional regulators. FEMS Yeast Res 6(3):325-35 PMID:16630273
    • SGD Paper
    • DOI full text
    • PubMed
  • De Luca C, et al. (2006) Mutations in yeast mt tRNAs: specific and general suppression by nuclear encoded tRNA interactors. Gene 377:169-76 PMID:16777356
    • SGD Paper
    • DOI full text
    • PubMed
  • Djapa LY, et al. (2006) Plasmodium vivax dihydrofolate reductase as a target of sulpha drugs. FEMS Microbiol Lett 256(1):105-11 PMID:16487326
    • SGD Paper
    • DOI full text
    • PubMed
  • Nosek J, et al. (2006) Mitochondrial chromosome structure: an insight from analysis of complete yeast genomes. FEMS Yeast Res 6(3):356-70 PMID:16630276
    • SGD Paper
    • DOI full text
    • PubMed
  • Sybirna K, et al. (2005) A new Hansenula polymorpha HAP4 homologue which contains only the N-terminal conserved domain of the protein is fully functional in Saccharomyces cerevisiae. Curr Genet 47(3):172-81 PMID:15614490
    • SGD Paper
    • DOI full text
    • PubMed
  • Bussereau F, et al. (2004) Zinc finger transcriptional activators of yeasts. FEMS Yeast Res 4(4-5):445-58 PMID:14734025
    • SGD Paper
    • DOI full text
    • PubMed
  • Dujon B, et al. (2004) Genome evolution in yeasts. Nature 430(6995):35-44 PMID:15229592
    • SGD Paper
    • DOI full text
    • PubMed
  • Buschlen S, et al. (2003) The S. Cerevisiae HAP complex, a key regulator of mitochondrial function, coordinates nuclear and mitochondrial gene expression. Comp Funct Genomics 4(1):37-46 PMID:18629096
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Feuermann M, et al. (2003) The yeast counterparts of human 'MELAS' mutations cause mitochondrial dysfunction that can be rescued by overexpression of the mitochondrial translation factor EF-Tu. EMBO Rep 4(1):53-8 PMID:12524521
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Brons JF, et al. (2002) Dissection of the promoter of the HAP4 gene in S. cerevisiae unveils a complex regulatory framework of transcriptional regulation. Yeast 19(11):923-32 PMID:12125049
    • SGD Paper
    • DOI full text
    • PubMed
  • Rinaldi T, et al. (2002) Mitochondrial effects of the pleiotropic proteasomal mutation mpr1/rpn11: uncoupling from cell cycle defects in extragenic revertants. Gene 286(1):43-51 PMID:11943459
    • SGD Paper
    • DOI full text
    • PubMed
  • Rohou H, et al. (2001) Reintroduction of a characterized Mit tRNA glycine mutation into yeast mitochondria provides a new tool for the study of human neurodegenerative diseases. Yeast 18(3):219-27 PMID:11180455
    • SGD Paper
    • DOI full text
    • PubMed
  • Tomlin GC, et al. (2001) A new family of yeast vectors and S288C-derived strains for the systematic analysis of gene function. Yeast 18(6):563-75 PMID:11284012
    • SGD Paper
    • DOI full text
    • PubMed
  • Blandin G, et al. (2000) Genomic exploration of the hemiascomycetous yeasts: 4. The genome of Saccharomyces cerevisiae revisited. FEBS Lett 487(1):31-6 PMID:11152879
    • SGD Paper
    • DOI full text
    • PubMed
  • Dumond H, et al. (2000) A large-scale study of Yap1p-dependent genes in normal aerobic and H2O2-stress conditions: the role of Yap1p in cell proliferation control in yeast. Mol Microbiol 36(4):830-45 PMID:10844671
    • SGD Paper
    • DOI full text
    • PubMed
  • Gaillardin C, et al. (2000) Genomic exploration of the hemiascomycetous yeasts: 21. Comparative functional classification of genes. FEBS Lett 487(1):134-49 PMID:11152896
    • SGD Paper
    • DOI full text
    • PubMed
  • Llorente B, et al. (2000) Genomic exploration of the hemiascomycetous yeasts: 18. Comparative analysis of chromosome maps and synteny with Saccharomyces cerevisiae. FEBS Lett 487(1):101-12 PMID:11152893
    • SGD Paper
    • DOI full text
    • PubMed
  • Llorente B, et al. (2000) Genomic exploration of the hemiascomycetous yeasts: 20. Evolution of gene redundancy compared to Saccharomyces cerevisiae. FEBS Lett 487(1):122-33 PMID:11152895
    • SGD Paper
    • DOI full text
    • PubMed
  • Malpertuy A, et al. (2000) Genomic exploration of the hemiascomycetous yeasts: 19. Ascomycetes-specific genes. FEBS Lett 487(1):113-21 PMID:11152894
    • SGD Paper
    • DOI full text
    • PubMed
  • Souciet J, et al. (2000) Genomic exploration of the hemiascomycetous yeasts: 1. A set of yeast species for molecular evolution studies. FEBS Lett 487(1):3-12 PMID:11152876
    • SGD Paper
    • DOI full text
    • PubMed
  • Tekaia F, et al. (2000) Genomic exploration of the hemiascomycetous yeasts: 3. Methods and strategies used for sequence analysis and annotation. FEBS Lett 487(1):17-30 PMID:11152878
    • SGD Paper
    • DOI full text
    • PubMed
  • Bourgarel D, et al. (1999) HAP4, the glucose-repressed regulated subunit of the HAP transcriptional complex involved in the fermentation-respiration shift, has a functional homologue in the respiratory yeast Kluyveromyces lactis. Mol Microbiol 31(4):1205-15 PMID:10096087
    • SGD Paper
    • DOI full text
    • PubMed
  • Francisci S, et al. (1998) Ts mutations in mitochondrial tRNA genes: characterization and effects of two point mutations in the mitochondrial gene for tRNAphe in Saccharomyces cerevisiae. Curr Genet 33(2):110-6 PMID:9506898
    • SGD Paper
    • DOI full text
    • PubMed
  • Rinaldi T, et al. (1998) A mutation in a novel yeast proteasomal gene, RPN11/MPR1, produces a cell cycle arrest, overreplication of nuclear and mitochondrial DNA, and an altered mitochondrial morphology. Mol Biol Cell 9(10):2917-31 PMID:9763452
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Billard P, et al. (1997) Characterization of an AP-1-like transcription factor that mediates an oxidative stress response in Kluyveromyces lactis. Mol Gen Genet 257(1):62-70 PMID:9439570
    • SGD Paper
    • DOI full text
    • PubMed
  • Dujon B, et al. (1997) The nucleotide sequence of Saccharomyces cerevisiae chromosome XV. Nature 387(6632 Suppl):98-102 PMID:9169874
    • SGD Paper
    • PubMed
  • Reisdorf P, et al. (1997) The MBR1 gene from Saccharomyces cerevisiae is activated by and required for growth under sub-optimal conditions. Mol Gen Genet 255(4):400-9 PMID:9267436
    • SGD Paper
    • DOI full text
    • PubMed
  • Rinaldi T, et al. (1997) Additional copies of the mitochondrial Ef-Tu and aspartyl-tRNA synthetase genes can compensate for a mutation affecting the maturation of the mitochondrial tRNAAsp. Curr Genet 31(6):494-6 PMID:9211792
    • SGD Paper
    • DOI full text
    • PubMed
  • Valens M, et al. (1997) The sequence of a 54.7 kb fragment of yeast chromosome XV reveals the presence of two tRNAs and 24 new open reading frames. Yeast 13(4):379-90 PMID:9133743
    • SGD Paper
    • DOI full text
    • PubMed
  • Billard P, et al. (1996) Glucose uptake in Kluyveromyces lactis: role of the HGT1 gene in glucose transport. J Bacteriol 178(20):5860-6 PMID:8830679
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Dang VD, et al. (1996) The CCAAT box-binding factor stimulates ammonium assimilation in Saccharomyces cerevisiae, defining a new cross-pathway regulation between nitrogen and carbon metabolisms. J Bacteriol 178(7):1842-9 PMID:8606156
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Dang VD, et al. (1996) Cloning of the ASN1 and ASN2 genes encoding asparagine synthetases in Saccharomyces cerevisiae: differential regulation by the CCAAT-box-binding factor. Mol Microbiol 22(4):681-92 PMID:8951815
    • SGD Paper
    • DOI full text
    • PubMed
  • Pel HJ, et al. (1996) The nuclear Kluyveromyces lactis MRF1 gene encodes a mitochondrial class I peptide chain release factor that is important for cell viability. Curr Genet 30(1):19-28 PMID:8662205
    • SGD Paper
    • DOI full text
    • PubMed
  • Nguyen C, et al. (1995) The respiratory system of Kluyveromyces lactis escapes from HAP2 control. Gene 152(1):113-5 PMID:7828916
    • SGD Paper
    • DOI full text
    • PubMed
  • Rinaldi T, et al. (1995) A Saccharomyces cerevisiae gene essential for viability has been conserved in evolution. Gene 160(1):135-6 PMID:7628709
    • SGD Paper
    • DOI full text
    • PubMed
  • Daignan-Fornier B, et al. (1994) Structure and regulation of SDH3, the yeast gene encoding the cytochrome b560 subunit of respiratory complex II. J Biol Chem 269(22):15469-72 PMID:8195189
    • SGD Paper
    • PubMed
  • Daignan-Fornier B, et al. (1994) MBR1 and MBR3, two related yeast genes that can suppress the growth defect of hap2, hap3 and hap4 mutants. Mol Gen Genet 243(5):575-83 PMID:8208248
    • SGD Paper
    • DOI full text
    • PubMed
  • Dang VD, et al. (1994) A genetic screen to isolate genes regulated by the yeast CCAAT-box binding protein Hap2p. Yeast 10(10):1273-83 PMID:7900416
    • SGD Paper
    • DOI full text
    • PubMed
  • Dujon B, et al. (1994) Complete DNA sequence of yeast chromosome XI. Nature 369(6479):371-8 PMID:8196765
    • SGD Paper
    • DOI full text
    • PubMed
  • Chéret G, et al. (1993) The DNA sequence analysis of the HAP4-LAP4 region on chromosome XI of Saccharomyces cerevisiae suggests the presence of a second aspartate aminotransferase gene in yeast. Yeast 9(11):1259-65 PMID:8109175
    • SGD Paper
    • DOI full text
    • PubMed
  • Pallier C, et al. (1993) DNA sequence analysis of a 17 kb fragment of yeast chromosome XI physically localizes the MRB1 gene and reveals eight new open reading frames, including a homologue of the KIN1/KIN2 and SNF1 protein kinases. Yeast 9(10):1149-55 PMID:8256524
    • SGD Paper
    • DOI full text
    • PubMed
  • Elelj-Fridhi N, et al. (1991) Mutational studies of the major tRNA region of the S. cerevisiae mitochondrial genome. Curr Genet 19(4):301-8 PMID:1651178
    • SGD Paper
    • DOI full text
    • PubMed
  • Valens M, et al. (1991) Identification of nuclear genes which participate to mitochondrial translation in Saccharomyces cerevisiae. Biochimie 73(12):1525-32 PMID:1725263
    • SGD Paper
    • DOI full text
    • PubMed
  • Zennaro E, et al. (1989) A point mutation in a mitochondrial tRNA gene abolishes its 3' end processing. Nucleic Acids Res 17(14):5751-64 PMID:2668892
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Daignan-Fornier B and Bolotin-Fukuhara M (1988) Mutational study of the rRNA in yeast mitochondria: functional importance of T1696 in the large rRNA gene. Nucleic Acids Res 16(19):9299-306 PMID:3050898
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Daignan-Fornier B and Bolotin-Fukuhara M (1988) In vivo functional characterization of a yeast nucleotide sequence: construction of a mini-Mu derivative adapted to yeast. Gene 62(1):45-54 PMID:2836269
    • SGD Paper
    • DOI full text
    • PubMed
  • Hefta LJ, et al. (1987) Nuclear and mitochondrial revertants of a mitochondrial mutant with a defect in the ATP synthetase complex. Mol Gen Genet 207(1):106-13 PMID:2885722
    • SGD Paper
    • DOI full text
    • PubMed
  • Contamine V and Bolotin-Fukuhara M (1984) A mitochondrial ribosomal RNA mutation and its nuclear suppressors. Mol Gen Genet 193(2):280-7 PMID:6363879
    • SGD Paper
    • DOI full text
    • PubMed
  • Julou C, et al. (1984) Mitochondrial ribosomal RNA genes of yeast: their mutations and a common nuclear suppressor. Mol Gen Genet 193(2):275-9 PMID:6363878
    • SGD Paper
    • DOI full text
    • PubMed
  • Julou C and Bolotin-Fukuhara M (1982) Genetics of mitochondrial ribosomes of yeast: mitochondrial lethality of a double mutant carrying two mutations of the 21S ribosomal RNA gene. Mol Gen Genet 188(2):256-60 PMID:6759872
    • SGD Paper
    • DOI full text
    • PubMed
  • Dujon B, et al. (1976) Mitochondrial genetics. XI. Mutations at the mitochondrial locus omega affecting the recombination of mitochondrial genes in Saccharomyces cerevisiae. Mol Gen Genet 143(2):131-65 PMID:765750
    • SGD Paper
    • DOI full text
    • PubMed
  • Fukuhara H and Bolotin-Fukuhara M (1976) Deletion mapping of mitochondrial transfer RNA genes in Saccharomyces cerevisiae by means of cytoplasmic petite mutants. Mol Gen Genet 145(1):7-17 PMID:775312
    • SGD Paper
    • DOI full text
    • PubMed
  • Esposito MS, et al. (1975) Antimutator activity during mitosis by a meiotic mutant of yeast. Mol Gen Genet 139(1):9-18 PMID:1101031
    • SGD Paper
    • DOI full text
    • PubMed
  • Deutsch J, et al. (1974) Mitochondrial genetics. VI. The petite mutation in Saccharomyces cerevisiae: interrelations between the loss of the p+ factor and the loss of the drug resistance mitochondrial genetic markers. Genetics 76(2):195-219 PMID:4595642
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Netter P, et al. (1974) Mitochondrial genetics. VII. Allelism and mapping studies of ribosomal mutants resistant to chloramphenicol, erythromycin and spiramycin in S. cerevisiae. Genetics 78(4):1063-100 PMID:4281750
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top