Qiu S and Blank LM (2025) Long-Term Yeast Cultivation Coupled with In Situ Extraction for High Triterpenoid Production. J Agric Food Chem 73(13):7933-7943 PMID:40129278
Dianat M, et al. (2024) Exploration of In Situ Extraction for Enhanced Triterpenoid Production by Saccharomyces cerevisiae. Microb Biotechnol 17(12):e70061 PMID:39696809
Qiu S, et al. (2024) Cultivation optimization promotes ginsenoside and universal triterpenoid production by engineered yeast. N Biotechnol 83:219-230 PMID:39181198
Shalu S, et al. (2024) Microbial Squalene: A Sustainable Alternative for the Cosmetics and Pharmaceutical Industry - A Review. Eng Life Sci 24(10):e202400003 PMID:39391272
Zhang C, et al. (2024) Yeast9: a consensus genome-scale metabolic model for S. cerevisiae curated by the community. Mol Syst Biol 20(10):1134-1150 PMID:39134886
Dianat M, et al. (2023) Non-invasive monitoring of microbial triterpenoid production using nonlinear microscopy techniques. Front Bioeng Biotechnol 11:1106566 PMID:36926686
Guo H, et al. (2023) Correction to "Engineering Critical Amino Acid Residues of Lanosterol Synthase to Improve the Production of Triterpenoids in Saccharomyces cerevisiae". ACS Synth Biol 12(4):1377 PMID:36947587
Qiu S and Blank LM (2023) Recent Advances in Yeast Recombinant Biosynthesis of the Triterpenoid Protopanaxadiol and Glycosylated Derivatives Thereof. J Agric Food Chem 71(5):2197-2210 PMID:36696911
Guo H, et al. (2022) Engineering Critical Amino Acid Residues of Lanosterol Synthase to Improve the Production of Triterpenoids in Saccharomyces cerevisiae. ACS Synth Biol 11(8):2685-2696 PMID:35921601
Mengers HG, et al. (2022) Using off-gas for insights through online monitoring of ethanol and baker's yeast volatilome using SESI-Orbitrap MS. Sci Rep 12(1):12462 PMID:35864195
Dahlin J, et al. (2020) Corrigendum: Multi-Omics Analysis of Fatty Alcohol Production in Engineered Yeasts Saccharomyces cerevisiae and Yarrowia lipolytica. Front Genet 11:637738 PMID:33505441
Ravikrishnan A, et al. (2020) Investigating metabolic interactions in a microbial co-culture through integrated modelling and experiments. Comput Struct Biotechnol J 18:1249-1258 PMID:32551031
Christ JJ, et al. (2019) Polyphosphate Chain Length Determination in the Range of Two to Several Hundred P-Subunits with a New Enzyme Assay and 31P NMR. Anal Chem 91(12):7654-7661 PMID:31082217
Dahlin J, et al. (2019) Multi-Omics Analysis of Fatty Alcohol Production in Engineered Yeasts Saccharomyces cerevisiae and Yarrowia lipolytica. Front Genet 10:747 PMID:31543895
Jessop-Fabre MM, et al. (2019) The Transcriptome and Flux Profiling of Crabtree-Negative Hydroxy Acid-Producing Strains of Saccharomyces cerevisiae Reveals Changes in the Central Carbon Metabolism. Biotechnol J 14(9):e1900013 PMID:30969019
Rockenbach A, et al. (2019) Microfluidic Irreversible Electroporation-A Versatile Tool to Extract Intracellular Contents of Bacteria and Yeast. Metabolites 9(10) PMID:31574935
Zahoor A, et al. (2019) Evaluation of pyruvate decarboxylase-negative Saccharomyces cerevisiae strains for the production of succinic acid. Eng Life Sci 19(10):711-720 PMID:32624964
Christ JJ and Blank LM (2018) Enzymatic quantification and length determination of polyphosphate down to a chain length of two. Anal Biochem 548:82-90 PMID:29481774
Ebert BE, et al. (2018) Physiologic and metabolic characterization of Saccharomyces cerevisiae reveals limitations in the synthesis of the triterpene squalene. FEMS Yeast Res 18(8) PMID:30053028
Czarnotta E, et al. (2017) Fermentation and purification strategies for the production of betulinic acid and its lupane-type precursors in Saccharomyces cerevisiae. Biotechnol Bioeng 114(11):2528-2538 PMID:28688186
Lehnen M, et al. (2017) A comprehensive evaluation of constraining amino acid biosynthesis in compartmented models for metabolic flux analysis. Metab Eng Commun 5:34-44 PMID:29188182
Kildegaard KR, et al. (2016) Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway. Microb Cell Fact 15:53 PMID:26980206
Agrimi G, et al. (2014) Improved sake metabolic profile during fermentation due to increased mitochondrial pyruvate dissimilation. FEMS Yeast Res 14(2):249-60 PMID:24151933
Woo JM, et al. (2014) High temperature stimulates acetic acid accumulation and enhances the growth inhibition and ethanol production by Saccharomyces cerevisiae under fermenting conditions. Appl Microbiol Biotechnol 98(13):6085-94 PMID:24706214
Blank LM, et al. (2012) Analysis of carbon and nitrogen co-metabolism in yeast by ultrahigh-resolution mass spectrometry applying 13C- and 15N-labeled substrates simultaneously. Anal Bioanal Chem 403(8):2291-305 PMID:22543713
Yang KM, et al. (2012) Ethanol reduces mitochondrial membrane integrity and thereby impacts carbon metabolism of Saccharomyces cerevisiae. FEMS Yeast Res 12(6):675-84 PMID:22697060
Hein EM, et al. (2009) Glycerophospholipid profiling by high-performance liquid chromatography/mass spectrometry using exact mass measurements and multi-stage mass spectrometric fragmentation experiments in parallel. Rapid Commun Mass Spectrom 23(11):1636-46 PMID:19408252
Heyland J, et al. (2009) Correlation between TCA cycle flux and glucose uptake rate during respiro-fermentative growth of Saccharomyces cerevisiae. Microbiology (Reading) 155(Pt 12):3827-3837 PMID:19684065
Blank LM and Sauer U (2004) TCA cycle activity in Saccharomyces cerevisiae is a function of the environmentally determined specific growth and glucose uptake rates. Microbiology (Reading) 150(Pt 4):1085-1093 PMID:15073318