AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Blank LM
  • References

Author: Blank LM


References 45 references


No citations for this author.

Download References (.nbib)

  • Qiu S and Blank LM (2025) Long-Term Yeast Cultivation Coupled with In Situ Extraction for High Triterpenoid Production. J Agric Food Chem 73(13):7933-7943 PMID:40129278
    • SGD Paper
    • DOI full text
    • PubMed
  • Dianat M, et al. (2024) Exploration of In Situ Extraction for Enhanced Triterpenoid Production by Saccharomyces cerevisiae. Microb Biotechnol 17(12):e70061 PMID:39696809
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Qiu S, et al. (2024) Cultivation optimization promotes ginsenoside and universal triterpenoid production by engineered yeast. N Biotechnol 83:219-230 PMID:39181198
    • SGD Paper
    • DOI full text
    • PubMed
  • Shalu S, et al. (2024) Microbial Squalene: A Sustainable Alternative for the Cosmetics and Pharmaceutical Industry - A Review. Eng Life Sci 24(10):e202400003 PMID:39391272
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zhang C, et al. (2024) Yeast9: a consensus genome-scale metabolic model for S. cerevisiae curated by the community. Mol Syst Biol 20(10):1134-1150 PMID:39134886
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Dianat M, et al. (2023) Non-invasive monitoring of microbial triterpenoid production using nonlinear microscopy techniques. Front Bioeng Biotechnol 11:1106566 PMID:36926686
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Fees J, et al. (2023) Biotechnological production of polyphosphate from industrial wash water. Biotechnol Bioeng 120(2):456-464 PMID:36314689
    • SGD Paper
    • DOI full text
    • PubMed
  • Guo H, et al. (2023) Correction to "Engineering Critical Amino Acid Residues of Lanosterol Synthase to Improve the Production of Triterpenoids in Saccharomyces cerevisiae". ACS Synth Biol 12(4):1377 PMID:36947587
    • SGD Paper
    • DOI full text
    • PubMed
  • Qiu S and Blank LM (2023) Recent Advances in Yeast Recombinant Biosynthesis of the Triterpenoid Protopanaxadiol and Glycosylated Derivatives Thereof. J Agric Food Chem 71(5):2197-2210 PMID:36696911
    • SGD Paper
    • DOI full text
    • PubMed
  • Guo H, et al. (2022) Engineering Critical Amino Acid Residues of Lanosterol Synthase to Improve the Production of Triterpenoids in Saccharomyces cerevisiae. ACS Synth Biol 11(8):2685-2696 PMID:35921601
    • SGD Paper
    • DOI full text
    • PubMed
  • Mengers HG, et al. (2022) Yeast-based production and in situ purification of acetaldehyde. Bioprocess Biosyst Eng 45(4):761-769 PMID:35137261
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mengers HG, et al. (2022) Using off-gas for insights through online monitoring of ethanol and baker's yeast volatilome using SESI-Orbitrap MS. Sci Rep 12(1):12462 PMID:35864195
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wang G, et al. (2022) An integrated yeast-based process for cis,cis-muconic acid production. Biotechnol Bioeng 119(2):376-387 PMID:34786710
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Christ JJ, et al. (2020) Biotechnological synthesis of water-soluble food-grade polyphosphate with Saccharomyces cerevisiae. Biotechnol Bioeng 117(7):2089-2099 PMID:32190899
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Dahlin J, et al. (2020) Corrigendum: Multi-Omics Analysis of Fatty Alcohol Production in Engineered Yeasts Saccharomyces cerevisiae and Yarrowia lipolytica. Front Genet 11:637738 PMID:33505441
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ravikrishnan A, et al. (2020) Investigating metabolic interactions in a microbial co-culture through integrated modelling and experiments. Comput Struct Biotechnol J 18:1249-1258 PMID:32551031
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Christ JJ, et al. (2019) Polyphosphate Chain Length Determination in the Range of Two to Several Hundred P-Subunits with a New Enzyme Assay and 31P NMR. Anal Chem 91(12):7654-7661 PMID:31082217
    • SGD Paper
    • DOI full text
    • PubMed
  • Dahlin J, et al. (2019) Multi-Omics Analysis of Fatty Alcohol Production in Engineered Yeasts Saccharomyces cerevisiae and Yarrowia lipolytica. Front Genet 10:747 PMID:31543895
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Jessop-Fabre MM, et al. (2019) The Transcriptome and Flux Profiling of Crabtree-Negative Hydroxy Acid-Producing Strains of Saccharomyces cerevisiae Reveals Changes in the Central Carbon Metabolism. Biotechnol J 14(9):e1900013 PMID:30969019
    • SGD Paper
    • DOI full text
    • PubMed
  • Rockenbach A, et al. (2019) Microfluidic Irreversible Electroporation-A Versatile Tool to Extract Intracellular Contents of Bacteria and Yeast. Metabolites 9(10) PMID:31574935
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zahoor A, et al. (2019) Evaluation of pyruvate decarboxylase-negative Saccharomyces cerevisiae strains for the production of succinic acid. Eng Life Sci 19(10):711-720 PMID:32624964
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Christ JJ and Blank LM (2018) Enzymatic quantification and length determination of polyphosphate down to a chain length of two. Anal Biochem 548:82-90 PMID:29481774
    • SGD Paper
    • DOI full text
    • PubMed
  • Christ JJ and Blank LM (2018) Analytical polyphosphate extraction from Saccharomyces cerevisiae. Anal Biochem 563:71-78 PMID:30287204
    • SGD Paper
    • DOI full text
    • PubMed
  • Ebert BE, et al. (2018) Physiologic and metabolic characterization of Saccharomyces cerevisiae reveals limitations in the synthesis of the triterpene squalene. FEMS Yeast Res 18(8) PMID:30053028
    • SGD Paper
    • DOI full text
    • PubMed
  • Czarnotta E, et al. (2017) Fermentation and purification strategies for the production of betulinic acid and its lupane-type precursors in Saccharomyces cerevisiae. Biotechnol Bioeng 114(11):2528-2538 PMID:28688186
    • SGD Paper
    • DOI full text
    • PubMed
  • Lehnen M, et al. (2017) A comprehensive evaluation of constraining amino acid biosynthesis in compartmented models for metabolic flux analysis. Metab Eng Commun 5:34-44 PMID:29188182
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tejero Rioseras A, et al. (2017) Comprehensive Real-Time Analysis of the Yeast Volatilome. Sci Rep 7(1):14236 PMID:29079837
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kildegaard KR, et al. (2016) Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway. Microb Cell Fact 15:53 PMID:26980206
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Agrimi G, et al. (2014) Improved sake metabolic profile during fermentation due to increased mitochondrial pyruvate dissimilation. FEMS Yeast Res 14(2):249-60 PMID:24151933
    • SGD Paper
    • DOI full text
    • PubMed
  • Förster J, et al. (2014) A blueprint of the amino acid biosynthesis network of hemiascomycetes. FEMS Yeast Res 14(7):1090-100 PMID:25187056
    • SGD Paper
    • DOI full text
    • PubMed
  • Halbfeld C, et al. (2014) Multi-capillary column-ion mobility spectrometry of volatile metabolites emitted by Saccharomyces cerevisiae. Metabolites 4(3):751-74 PMID:25197771
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Woo JM, et al. (2014) High temperature stimulates acetic acid accumulation and enhances the growth inhibition and ethanol production by Saccharomyces cerevisiae under fermenting conditions. Appl Microbiol Biotechnol 98(13):6085-94 PMID:24706214
    • SGD Paper
    • DOI full text
    • PubMed
  • Blank LM, et al. (2012) Analysis of carbon and nitrogen co-metabolism in yeast by ultrahigh-resolution mass spectrometry applying 13C- and 15N-labeled substrates simultaneously. Anal Bioanal Chem 403(8):2291-305 PMID:22543713
    • SGD Paper
    • DOI full text
    • PubMed
  • Yang KM, et al. (2012) Ethanol reduces mitochondrial membrane integrity and thereby impacts carbon metabolism of Saccharomyces cerevisiae. FEMS Yeast Res 12(6):675-84 PMID:22697060
    • SGD Paper
    • DOI full text
    • PubMed
  • Blank LM and Kuepfer L (2010) Metabolic flux distributions: genetic information, computational predictions, and experimental validation. Appl Microbiol Biotechnol 86(5):1243-55 PMID:20232063
    • SGD Paper
    • DOI full text
    • PubMed
  • Schmid A and Blank LM (2010) Systems biology: Hypothesis-driven omics integration. Nat Chem Biol 6(7):485-7 PMID:20559314
    • SGD Paper
    • DOI full text
    • PubMed
  • Hein EM, et al. (2009) Glycerophospholipid profiling by high-performance liquid chromatography/mass spectrometry using exact mass measurements and multi-stage mass spectrometric fragmentation experiments in parallel. Rapid Commun Mass Spectrom 23(11):1636-46 PMID:19408252
    • SGD Paper
    • DOI full text
    • PubMed
  • Heyland J, et al. (2009) Correlation between TCA cycle flux and glucose uptake rate during respiro-fermentative growth of Saccharomyces cerevisiae. Microbiology (Reading) 155(Pt 12):3827-3837 PMID:19684065
    • SGD Paper
    • DOI full text
    • PubMed
  • Kortmann H, et al. (2009) The Envirostat - a new bioreactor concept. Lab Chip 9(4):576-85 PMID:19190793
    • SGD Paper
    • DOI full text
    • PubMed
  • Kortmann H, et al. (2009) Single cell analysis reveals unexpected growth phenotype of S. cerevisiae. Cytometry A 75(2):130-9 PMID:19051327
    • SGD Paper
    • DOI full text
    • PubMed
  • Kurth F, et al. (2008) Bilayer microfluidic chip for diffusion-controlled activation of yeast species. J Chromatogr A 1206(1):77-82 PMID:18701110
    • SGD Paper
    • DOI full text
    • PubMed
  • Blank LM, et al. (2005) Metabolic-flux and network analysis in fourteen hemiascomycetous yeasts. FEMS Yeast Res 5(6-7):545-58 PMID:15780654
    • SGD Paper
    • DOI full text
    • PubMed
  • Blank LM, et al. (2005) Large-scale 13C-flux analysis reveals mechanistic principles of metabolic network robustness to null mutations in yeast. Genome Biol 6(6):R49 PMID:15960801
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
    • Reference supplement
  • Kuepfer L, et al. (2005) Metabolic functions of duplicate genes in Saccharomyces cerevisiae. Genome Res 15(10):1421-30 PMID:16204195
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Blank LM and Sauer U (2004) TCA cycle activity in Saccharomyces cerevisiae is a function of the environmentally determined specific growth and glucose uptake rates. Microbiology (Reading) 150(Pt 4):1085-1093 PMID:15073318
    • SGD Paper
    • DOI full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top