AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Bisson LF
  • References

Author: Bisson LF


References 41 references


No citations for this author.

Download References (.nbib)

  • Lu Y, et al. (2024) Insight into the growth and metabolic characteristics of indigenous commercial S. cerevisiae NX11424 at high and low levels of yeast assimilable nitrogen based on metabolomic approach. Food Microbiol 124:104593 PMID:39244355
    • SGD Paper
    • DOI full text
    • PubMed
  • Walker GA, et al. (2020) Downshifting Yeast Dominance: Cell Physiology and Phospholipid Composition Are Altered With Establishment of the [GAR +] Prion in Saccharomyces cerevisiae. Front Microbiol 11:2011 PMID:32983023
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ogawa M, et al. (2019) New insights on yeast and filamentous fungus adhesion in a natural co-immobilization system: proposed advances and applications in wine industry. Appl Microbiol Biotechnol 103(12):4723-4731 PMID:31079167
    • SGD Paper
    • DOI full text
    • PubMed
  • Moreno-García J, et al. (2018) FLO1, FLO5 and FLO11 Flocculation Gene Expression Impacts Saccharomyces cerevisiae Attachment to Penicillium chrysogenum in a Co-immobilization Technique. Front Microbiol 9:2586 PMID:30429833
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bisson LF, et al. (2016) Sugar and Glycerol Transport in Saccharomyces cerevisiae. Adv Exp Med Biol 892:125-168 PMID:26721273
    • SGD Paper
    • DOI full text
    • PubMed
  • Jarosz DF, et al. (2014) Cross-kingdom chemical communication drives a heritable, mutually beneficial prion-based transformation of metabolism. Cell 158(5):1083-1093 PMID:25171409
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Dietzel KL, et al. (2012) MTH1 and RGT1 demonstrate combined haploinsufficiency in regulation of the hexose transporter genes in Saccharomyces cerevisiae. BMC Genet 13:107 PMID:23234240
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bisson LF and Karpel JE (2010) Genetics of yeast impacting wine quality. Annu Rev Food Sci Technol 1:139-62 PMID:22129333
    • SGD Paper
    • DOI full text
    • PubMed
  • Linderholm A, et al. (2010) Identification of MET10-932 and characterization as an allele reducing hydrogen sulfide formation in wine strains of Saccharomyces cerevisiae. Appl Environ Microbiol 76(23):7699-707 PMID:20889780
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Linderholm AL, et al. (2008) Identification of genes affecting hydrogen sulfide formation in Saccharomyces cerevisiae. Appl Environ Microbiol 74(5):1418-27 PMID:18192430
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bisson LF, et al. (2007) Functional genomics of wine yeast Saccharomyces cerevisiae. Adv Food Nutr Res 53:65-121 PMID:17900497
    • SGD Paper
    • DOI full text
    • PubMed
  • Ramakrishnan V, et al. (2007) Loss of IRA2 suppresses the growth defect on low glucose caused by the snf3 mutation in Saccharomyces cerevisiae. FEMS Yeast Res 7(1):67-77 PMID:17311585
    • SGD Paper
    • DOI full text
    • PubMed
  • Karpel JE and Bisson LF (2006) Aquaporins in Saccharomyces cerevisiae wine yeast. FEMS Microbiol Lett 257(1):117-23 PMID:16553841
    • SGD Paper
    • DOI full text
    • PubMed
  • Bisson LF and Kunathigan V (2003) On the trail of an elusive flux sensor. Res Microbiol 154(9):603-10 PMID:14596896
    • SGD Paper
    • DOI full text
    • PubMed
  • Lee WJ, et al. (2002) Kinetic studies on glucose and xylose transport in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 60(1-2):186-91 PMID:12382062
    • SGD Paper
    • DOI full text
    • PubMed
  • Backhus LE, et al. (2001) Functional genomic analysis of a commercial wine strain of Saccharomyces cerevisiae under differing nitrogen conditions. FEMS Yeast Res 1(2):111-25 PMID:12702356
    • SGD Paper
    • DOI full text
    • PubMed
  • Theodoris G and Bisson LF (2001) DDSE: downstream targets of the SNF3 signal transduction pathway. FEMS Microbiol Lett 197(1):73-7 PMID:11287149
    • SGD Paper
    • DOI full text
    • PubMed
  • Cocolin L, et al. (2000) Direct profiling of the yeast dynamics in wine fermentations. FEMS Microbiol Lett 189(1):81-7 PMID:10913870
    • SGD Paper
    • DOI full text
    • PubMed
  • Spiropoulos A and Bisson LF (2000) MET17 and hydrogen sulfide formation in Saccharomyces cerevisiae. Appl Environ Microbiol 66(10):4421-6 PMID:11010893
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Türkel S and Bisson LF (1999) Transcription of the HXT4 gene is regulated by Gcr1p and Gcr2p in the yeast S. cerevisiae. Yeast 15(11):1045-57 PMID:10455229
    • SGD Paper
    • DOI full text
    • PubMed
  • Vagnoli P and Bisson LF (1998) The SKS1 gene of Saccharomyces cerevisiae is required for long-term adaptation of snf3 null strains to low glucose. Yeast 14(4):359-69 PMID:9559544
    • SGD Paper
    • DOI full text
    • PubMed
  • Vagnoli P, et al. (1998) The C-terminal domain of Snf3p mediates glucose-responsive signal transduction in Saccharomyces cerevisiae. FEMS Microbiol Lett 160(1):31-6 PMID:9495009
    • SGD Paper
    • DOI full text
    • PubMed
  • Coons DM, et al. (1997) The C-terminal domain of Snf3p is sufficient to complement the growth defect of snf3 null mutations in Saccharomyces cerevisiae: SNF3 functions in glucose recognition. Yeast 13(1):9-20 PMID:9046082
    • SGD Paper
    • DOI full text
    • PubMed
  • Yang Z and Bisson LF (1996) The SKS1 protein kinase is a multicopy suppressor of the snf3 mutation of Saccharomyces cerevisiae. Yeast 12(14):1407-19 PMID:8948096
    • SGD Paper
    • DOI full text
    • PubMed
  • Coons DM, et al. (1995) Computer-assisted nonlinear regression analysis of the multicomponent glucose uptake kinetics of Saccharomyces cerevisiae. J Bacteriol 177(11):3251-8 PMID:7768825
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Theodoris G, et al. (1994) High-copy suppression of glucose transport defects by HXT4 and regulatory elements in the promoters of the HXT genes in Saccharomyces cerevisiae. Genetics 137(4):957-66 PMID:7982576
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Vallier LG, et al. (1994) Altered regulatory responses to glucose are associated with a glucose transport defect in grr1 mutants of Saccharomyces cerevisiae. Genetics 136(4):1279-85 PMID:8013905
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wendell DL and Bisson LF (1994) Expression of high-affinity glucose transport protein Hxt2p of Saccharomyces cerevisiae is both repressed and induced by glucose and appears to be regulated posttranslationally. J Bacteriol 176(12):3730-7 PMID:8206851
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bisson LF, et al. (1993) Yeast sugar transporters. Crit Rev Biochem Mol Biol 28(4):259-308 PMID:8403984
    • SGD Paper
    • DOI full text
    • PubMed
  • Wendell DL and Bisson LF (1993) Physiological characterization of putative high-affinity glucose transport protein Hxt2 of Saccharomyces cerevisiae by use of anti-synthetic peptide antibodies. J Bacteriol 175(23):7689-96 PMID:8244939
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lewis DA and Bisson LF (1991) The HXT1 gene product of Saccharomyces cerevisiae is a new member of the family of hexose transporters. Mol Cell Biol 11(7):3804-13 PMID:2046678
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kruckeberg AL and Bisson LF (1990) The HXT2 gene of Saccharomyces cerevisiae is required for high-affinity glucose transport. Mol Cell Biol 10(11):5903-13 PMID:2233722
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bisson LF (1988) Derepression of high-affinity glucose uptake requires a functional secretory system in Saccharomyces cerevisiae. J Bacteriol 170(6):2654-8 PMID:3286616
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bisson LF (1988) High-affinity glucose transport in Saccharomyces cerevisiae is under general glucose repression control. J Bacteriol 170(10):4838-45 PMID:3049551
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bisson LF, et al. (1987) The SNF3 gene is required for high-affinity glucose transport in Saccharomyces cerevisiae. J Bacteriol 169(4):1656-62 PMID:3549699
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bisson LF and Fraenkel DG (1983) Involvement of kinases in glucose and fructose uptake by Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 80(6):1730-4 PMID:6300872
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bisson LF and Fraenkel DG (1983) Transport of 6-deoxyglucose in Saccharomyces cerevisiae. J Bacteriol 155(3):995-1000 PMID:6350275
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bisson LF and Thorner J (1982) Effect of halogenated pyrimidine 5'-mononucleotides on dTMP-permeable yeast strains and the isolation and characterization of resistant mutants. Mol Gen Genet 186(4):467-74 PMID:6752656
    • SGD Paper
    • DOI full text
    • PubMed
  • Bisson LF and Thorner J (1982) Exogenous dTMP utilization by a novel tup mutant of Saccharomyces cerevisiae. J Bacteriol 152(1):111-9 PMID:6749802
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bisson LF and Thorner J (1982) Mutations in the pho80 gene confer permeability to 5'-mononucleotides in Saccharomyces cerevisiae. Genetics 102(3):341-59 PMID:6293915
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bisson LF and Thorner J (1981) Thymidylate synthetase from Saccharomyces cerevisiae. Purification and enzymic properties. J Biol Chem 256(23):12456-62 PMID:7028756
    • SGD Paper
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top