Lu Y, et al. (2024) Insight into the growth and metabolic characteristics of indigenous commercial S. cerevisiae NX11424 at high and low levels of yeast assimilable nitrogen based on metabolomic approach. Food Microbiol 124:104593 PMID:39244355
Walker GA, et al. (2020) Downshifting Yeast Dominance: Cell Physiology and Phospholipid Composition Are Altered With Establishment of the [GAR+] Prion in Saccharomyces cerevisiae. Front Microbiol 11:2011 PMID:32983023
Ogawa M, et al. (2019) New insights on yeast and filamentous fungus adhesion in a natural co-immobilization system: proposed advances and applications in wine industry. Appl Microbiol Biotechnol 103(12):4723-4731 PMID:31079167
Moreno-García J, et al. (2018)FLO1, FLO5 and FLO11 Flocculation Gene Expression Impacts Saccharomyces cerevisiae Attachment to Penicillium chrysogenum in a Co-immobilization Technique. Front Microbiol 9:2586 PMID:30429833
Jarosz DF, et al. (2014) Cross-kingdom chemical communication drives a heritable, mutually beneficial prion-based transformation of metabolism. Cell 158(5):1083-1093 PMID:25171409
Dietzel KL, et al. (2012) MTH1 and RGT1 demonstrate combined haploinsufficiency in regulation of the hexose transporter genes in Saccharomyces cerevisiae. BMC Genet 13:107 PMID:23234240
Linderholm A, et al. (2010) Identification of MET10-932 and characterization as an allele reducing hydrogen sulfide formation in wine strains of Saccharomyces cerevisiae. Appl Environ Microbiol 76(23):7699-707 PMID:20889780
Linderholm AL, et al. (2008) Identification of genes affecting hydrogen sulfide formation in Saccharomyces cerevisiae. Appl Environ Microbiol 74(5):1418-27 PMID:18192430
Ramakrishnan V, et al. (2007) Loss of IRA2 suppresses the growth defect on low glucose caused by the snf3 mutation in Saccharomyces cerevisiae. FEMS Yeast Res 7(1):67-77 PMID:17311585
Lee WJ, et al. (2002) Kinetic studies on glucose and xylose transport in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 60(1-2):186-91 PMID:12382062
Backhus LE, et al. (2001) Functional genomic analysis of a commercial wine strain of Saccharomyces cerevisiae under differing nitrogen conditions. FEMS Yeast Res 1(2):111-25 PMID:12702356
Spiropoulos A and Bisson LF (2000) MET17 and hydrogen sulfide formation in Saccharomyces cerevisiae. Appl Environ Microbiol 66(10):4421-6 PMID:11010893
Türkel S and Bisson LF (1999) Transcription of the HXT4 gene is regulated by Gcr1p and Gcr2p in the yeast S. cerevisiae. Yeast 15(11):1045-57 PMID:10455229
Vagnoli P and Bisson LF (1998) The SKS1 gene of Saccharomyces cerevisiae is required for long-term adaptation of snf3 null strains to low glucose. Yeast 14(4):359-69 PMID:9559544
Vagnoli P, et al. (1998) The C-terminal domain of Snf3p mediates glucose-responsive signal transduction in Saccharomyces cerevisiae. FEMS Microbiol Lett 160(1):31-6 PMID:9495009
Coons DM, et al. (1997) The C-terminal domain of Snf3p is sufficient to complement the growth defect of snf3 null mutations in Saccharomyces cerevisiae: SNF3 functions in glucose recognition. Yeast 13(1):9-20 PMID:9046082
Yang Z and Bisson LF (1996) The SKS1 protein kinase is a multicopy suppressor of the snf3 mutation of Saccharomyces cerevisiae. Yeast 12(14):1407-19 PMID:8948096
Theodoris G, et al. (1994) High-copy suppression of glucose transport defects by HXT4 and regulatory elements in the promoters of the HXT genes in Saccharomyces cerevisiae. Genetics 137(4):957-66 PMID:7982576
Vallier LG, et al. (1994) Altered regulatory responses to glucose are associated with a glucose transport defect in grr1 mutants of Saccharomyces cerevisiae. Genetics 136(4):1279-85 PMID:8013905
Wendell DL and Bisson LF (1994) Expression of high-affinity glucose transport protein Hxt2p of Saccharomyces cerevisiae is both repressed and induced by glucose and appears to be regulated posttranslationally. J Bacteriol 176(12):3730-7 PMID:8206851
Wendell DL and Bisson LF (1993) Physiological characterization of putative high-affinity glucose transport protein Hxt2 of Saccharomyces cerevisiae by use of anti-synthetic peptide antibodies. J Bacteriol 175(23):7689-96 PMID:8244939
Lewis DA and Bisson LF (1991) The HXT1 gene product of Saccharomyces cerevisiae is a new member of the family of hexose transporters. Mol Cell Biol 11(7):3804-13 PMID:2046678
Kruckeberg AL and Bisson LF (1990) The HXT2 gene of Saccharomyces cerevisiae is required for high-affinity glucose transport. Mol Cell Biol 10(11):5903-13 PMID:2233722
Bisson LF (1988) Derepression of high-affinity glucose uptake requires a functional secretory system in Saccharomyces cerevisiae. J Bacteriol 170(6):2654-8 PMID:3286616
Bisson LF (1988) High-affinity glucose transport in Saccharomyces cerevisiae is under general glucose repression control. J Bacteriol 170(10):4838-45 PMID:3049551
Bisson LF, et al. (1987) The SNF3 gene is required for high-affinity glucose transport in Saccharomyces cerevisiae. J Bacteriol 169(4):1656-62 PMID:3549699
Bisson LF and Fraenkel DG (1983) Involvement of kinases in glucose and fructose uptake by Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 80(6):1730-4 PMID:6300872
Bisson LF and Thorner J (1982) Effect of halogenated pyrimidine 5'-mononucleotides on dTMP-permeable yeast strains and the isolation and characterization of resistant mutants. Mol Gen Genet 186(4):467-74 PMID:6752656
Bisson LF and Thorner J (1982) Mutations in the pho80 gene confer permeability to 5'-mononucleotides in Saccharomyces cerevisiae. Genetics 102(3):341-59 PMID:6293915