AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: André B
  • References

Author: André B


References 85 references


No citations for this author.

Download References (.nbib)

  • Guarini N, et al. (2024) Phosphoregulation of the yeast Pma1 H+-ATPase autoinhibitory domain involves the Ptk1/2 kinases and the Glc7 PP1 phosphatase and is under TORC1 control. PLoS Genet 20(1):e1011121 PMID:38227612
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yin X, et al. (2024) Quantification of amino acids secreted by yeast cells by hydrophilic interaction liquid chromatography-tandem mass spectrometry. J Sep Sci 47(13):e2400318 PMID:38982556
    • SGD Paper
    • DOI full text
    • PubMed
  • Kapetanakis GC, et al. (2023) Deletion of QDR genes in a bioethanol-producing yeast strain reduces propagation of contaminating lactic acid bacteria. Sci Rep 13(1):4986 PMID:36973391
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Megarioti AH, et al. (2023) Ferroptosis-protective membrane domains in quiescence. Cell Rep 42(12):113561 PMID:38096056
    • SGD Paper
    • DOI full text
    • PubMed
  • Kapetanakis GC, et al. (2021) Overlapping Roles of Yeast Transporters Aqr1, Qdr2, and Qdr3 in Amino Acid Excretion and Cross-Feeding of Lactic Acid Bacteria. Front Microbiol 12:752742 PMID:34887841
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Megarioti AH, et al. (2021) The Bul1/2 Alpha-Arrestins Promote Ubiquitylation and Endocytosis of the Can1 Permease upon Cycloheximide-Induced TORC1-Hyperactivation. Int J Mol Sci 22(19) PMID:34638549
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Saliba E, et al. (2021) A plant plasma-membrane H+-ATPase promotes yeast TORC1 activation via its carboxy-terminal tail. Sci Rep 11(1):4788 PMID:33637787
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cools M, et al. (2020) Nitrogen coordinated import and export of arginine across the yeast vacuolar membrane. PLoS Genet 16(8):e1008966 PMID:32776922
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Esch BM, et al. (2020) Uptake of exogenous serine is important to maintain sphingolipid homeostasis in Saccharomyces cerevisiae. PLoS Genet 16(8):e1008745 PMID:32845888
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Athanasopoulos A, et al. (2019) Fungal plasma membrane domains. FEMS Microbiol Rev 43(6):642-673 PMID:31504467
    • SGD Paper
    • DOI full text
    • PubMed
  • Cools M, et al. (2019) Measuring the Activity of Plasma Membrane and Vacuolar Transporters in Yeast. Methods Mol Biol 2049:247-261 PMID:31602616
    • SGD Paper
    • DOI full text
    • PubMed
  • André B (2018) Tribute to Marcelle Grenson (1925-1996), A Pioneer in the Study of Amino Acid Transport in Yeast. Int J Mol Sci 19(4) PMID:29659503
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gournas C, et al. (2018) Conformation-dependent partitioning of yeast nutrient transporters into starvation-protective membrane domains. Proc Natl Acad Sci U S A 115(14):E3145-E3154 PMID:29559531
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Saliba E, et al. (2018) The yeast H+-ATPase Pma1 promotes Rag/Gtr-dependent TORC1 activation in response to H+-coupled nutrient uptake. Elife 7 PMID:29570051
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Barthelemy C, et al. (2017) FTY720-induced endocytosis of yeast and human amino acid transporters is preceded by reduction of their inherent activity and TORC1 inhibition. Sci Rep 7(1):13816 PMID:29062000
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gournas C, et al. (2017) Transition of yeast Can1 transporter to the inward-facing state unveils an α-arrestin target sequence promoting its ubiquitylation and endocytosis. Mol Biol Cell 28(21):2819-2832 PMID:28814503
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Talaia G, et al. (2017) The α-Arrestin Bul1p Mediates Lactate Transporter Endocytosis in Response to Alkalinization and Distinct Physiological Signals. J Mol Biol 429(23):3678-3695 PMID:28965784
    • SGD Paper
    • DOI full text
    • PubMed
  • Gournas C, et al. (2016) Function and Regulation of Fungal Amino Acid Transporters: Insights from Predicted Structure. Adv Exp Med Biol 892:69-106 PMID:26721271
    • SGD Paper
    • DOI full text
    • PubMed
  • Llinares E, et al. (2015) The AP-3 adaptor complex mediates sorting of yeast and mammalian PQ-loop-family basic amino acid transporters to the vacuolar/lysosomal membrane. Sci Rep 5:16665 PMID:26577948
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Crapeau M, et al. (2014) Stress conditions promote yeast Gap1 permease ubiquitylation and down-regulation via the arrestin-like Bul and Aly proteins. J Biol Chem 289(32):22103-16 PMID:24942738
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ghaddar K, et al. (2014) Converting the yeast arginine can1 permease to a lysine permease. J Biol Chem 289(10):7232-7246 PMID:24448798
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ghaddar K, et al. (2014) Substrate-induced ubiquitylation and endocytosis of yeast amino acid permeases. Mol Cell Biol 34(24):4447-63 PMID:25266656
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Debailleul F, et al. (2013) Nitrogen catabolite repressible GAP1 promoter, a new tool for efficient recombinant protein production in S. cerevisiae. Microb Cell Fact 12:129 PMID:24369062
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Jézégou A, et al. (2012) Heptahelical protein PQLC2 is a lysosomal cationic amino acid exporter underlying the action of cysteamine in cystinosis therapy. Proc Natl Acad Sci U S A 109(50):E3434-43 PMID:23169667
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Merhi A and André B (2012) Internal amino acids promote Gap1 permease ubiquitylation via TORC1/Npr1/14-3-3-dependent control of the Bul arrestin-like adaptors. Mol Cell Biol 32(22):4510-22 PMID:22966204
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Abdel-Sater F, et al. (2011) Amino acid signaling in yeast: activation of Ssy5 protease is associated with its phosphorylation-induced ubiquitylation. J Biol Chem 286(14):12006-15 PMID:21310956
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Brohée S, et al. (2011) Unraveling networks of co-regulated genes on the sole basis of genome sequences. Nucleic Acids Res 39(15):6340-58 PMID:21572103
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Merhi A, et al. (2011) Systematic mutational analysis of the intracellular regions of yeast Gap1 permease. PLoS One 6(4):e18457 PMID:21526172
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Brohée S, et al. (2010) YTPdb: a wiki database of yeast membrane transporters. Biochim Biophys Acta 1798(10):1908-12 PMID:20599686
    • SGD Paper
    • DOI full text
    • PubMed
    • Reference supplement
  • Lauwers E, et al. (2010) The ubiquitin code of yeast permease trafficking. Trends Cell Biol 20(4):196-204 PMID:20138522
    • SGD Paper
    • DOI full text
    • PubMed
  • Wielemans K, et al. (2010) Amino acid signaling in yeast: post-genome duplication divergence of the Stp1 and Stp2 transcription factors. J Biol Chem 285(2):855-65 PMID:19906648
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lauwers E, et al. (2009) K63-linked ubiquitin chains as a specific signal for protein sorting into the multivesicular body pathway. J Cell Biol 185(3):493-502 PMID:19398763
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Boeckstaens M, et al. (2008) Distinct transport mechanisms in yeast ammonium transport/sensor proteins of the Mep/Amt/Rh family and impact on filamentation. J Biol Chem 283(31):21362-70 PMID:18508774
    • SGD Paper
    • DOI full text
    • PubMed
  • Kontos K, et al. (2008) Machine learning techniques to identify putative genes involved in nitrogen catabolite repression in the yeast Saccharomyces cerevisiae. BMC Proc 2 Suppl 4(Suppl 4):S5 PMID:19091052
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Boeckstaens M, et al. (2007) The yeast ammonium transport protein Mep2 and its positive regulator, the Npr1 kinase, play an important role in normal and pseudohyphal growth on various nitrogen media through retrieval of excreted ammonium. Mol Microbiol 64(2):534-46 PMID:17493133
    • SGD Paper
    • DOI full text
    • PubMed
  • Godard P, et al. (2007) Effect of 21 different nitrogen sources on global gene expression in the yeast Saccharomyces cerevisiae. Mol Cell Biol 27(8):3065-86 PMID:17308034
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lauwers E, et al. (2007) Evidence for coupled biogenesis of yeast Gap1 permease and sphingolipids: essential role in transport activity and normal control by ubiquitination. Mol Biol Cell 18(8):3068-80 PMID:17553927
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Nikko E and André B (2007) Evidence for a direct role of the Doa4 deubiquitinating enzyme in protein sorting into the MVB pathway. Traffic 8(5):566-81 PMID:17376168
    • SGD Paper
    • DOI full text
    • PubMed
  • Nikko E and André B (2007) Split-ubiquitin two-hybrid assay to analyze protein-protein interactions at the endosome: application to Saccharomyces cerevisiae Bro1 interacting with ESCRT complexes, the Doa4 ubiquitin hydrolase, and the Rsp5 ubiquitin ligase. Eukaryot Cell 6(8):1266-77 PMID:17513562
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lauwers E and André B (2006) Association of yeast transporters with detergent-resistant membranes correlates with their cell-surface location. Traffic 7(8):1045-59 PMID:16734661
    • SGD Paper
    • DOI full text
    • PubMed
  • Marini AM, et al. (2006) Structural involvement in substrate recognition of an essential aspartate residue conserved in Mep/Amt and Rh-type ammonium transporters. Curr Genet 49(6):364-74 PMID:16477434
    • SGD Paper
    • DOI full text
    • PubMed
  • Steuve S, et al. (2006) Rhophilin-2 is targeted to late-endosomal structures of the vesicular machinery in the presence of activated RhoB. Exp Cell Res 312(20):3981-9 PMID:17054945
    • SGD Paper
    • DOI full text
    • PubMed
  • Güldener U, et al. (2005) CYGD: the Comprehensive Yeast Genome Database. Nucleic Acids Res 33(Database issue):D364-8 PMID:15608217
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Abdel-Sater F, et al. (2004) Amino acid signaling in yeast: casein kinase I and the Ssy5 endoprotease are key determinants of endoproteolytic activation of the membrane-bound Stp1 transcription factor. Mol Cell Biol 24(22):9771-85 PMID:15509782
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Abdel-Sater F, et al. (2004) The external amino acid signaling pathway promotes activation of Stp1 and Uga35/Dal81 transcription factors for induction of the AGP1 gene in Saccharomyces cerevisiae. Genetics 166(4):1727-39 PMID:15126393
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Velasco I, et al. (2004) Saccharomyces cerevisiae Aqr1 is an internal-membrane transporter involved in excretion of amino acids. Eukaryot Cell 3(6):1492-503 PMID:15590823
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Javelle A, et al. (2003) High-affinity ammonium transporters and nitrogen sensing in mycorrhizas. Trends Microbiol 11(2):53-5 PMID:12598122
    • SGD Paper
    • DOI full text
    • PubMed
  • Javelle A, et al. (2003) Molecular characterization, function and regulation of ammonium transporters (Amt) and ammonium-metabolizing enzymes (GS, NADP-GDH) in the ectomycorrhizal fungus Hebeloma cylindrosporum. Mol Microbiol 47(2):411-30 PMID:12519192
    • SGD Paper
    • DOI full text
    • PubMed
  • Ludewig U, et al. (2003) Homo- and hetero-oligomerization of ammonium transporter-1 NH4 uniporters. J Biol Chem 278(46):45603-10 PMID:12952951
    • SGD Paper
    • DOI full text
    • PubMed
  • Nikko E, et al. (2003) Permease recycling and ubiquitination status reveal a particular role for Bro1 in the multivesicular body pathway. J Biol Chem 278(50):50732-43 PMID:14523026
    • SGD Paper
    • DOI full text
    • PubMed
  • Giaever G, et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418(6896):387-91 PMID:12140549
    • SGD Paper
    • DOI full text
    • PubMed
    • Reference supplement
  • Springael JY, et al. (2002) Yeast Npi3/Bro1 is involved in ubiquitin-dependent control of permease trafficking. FEBS Lett 517(1-3):103-9 PMID:12062418
    • SGD Paper
    • DOI full text
    • PubMed
  • Bernard F and André B (2001) Ubiquitin and the SCF(Grr1) ubiquitin ligase complex are involved in the signalling pathway activated by external amino acids in Saccharomyces cerevisiae. FEBS Lett 496(2-3):81-5 PMID:11356187
    • SGD Paper
    • DOI full text
    • PubMed
  • Bernard F and André B (2001) Genetic analysis of the signalling pathway activated by external amino acids in Saccharomyces cerevisiae. Mol Microbiol 41(2):489-502 PMID:11489133
    • SGD Paper
    • DOI full text
    • PubMed
  • Makuc J, et al. (2001) The putative monocarboxylate permeases of the yeast Saccharomyces cerevisiae do not transport monocarboxylic acids across the plasma membrane. Yeast 18(12):1131-43 PMID:11536335
    • SGD Paper
    • DOI full text
    • PubMed
  • Van Belle D and André B (2001) A genomic view of yeast membrane transporters. Curr Opin Cell Biol 13(4):389-98 PMID:11454442
    • SGD Paper
    • DOI full text
    • PubMed
  • Marini AM and André B (2000) In vivo N-glycosylation of the mep2 high-affinity ammonium transporter of Saccharomyces cerevisiae reveals an extracytosolic N-terminus. Mol Microbiol 38(3):552-64 PMID:11069679
    • SGD Paper
    • DOI full text
    • PubMed
  • Marini AM, et al. (2000) The human Rhesus-associated RhAG protein and a kidney homologue promote ammonium transport in yeast. Nat Genet 26(3):341-4 PMID:11062476
    • SGD Paper
    • DOI full text
    • PubMed
  • Marini AM, et al. (2000) Cross-talk between ammonium transporters in yeast and interference by the soybean SAT1 protein. Mol Microbiol 35(2):378-85 PMID:10652098
    • SGD Paper
    • DOI full text
    • PubMed
  • van Helden J, et al. (2000) A web site for the computational analysis of yeast regulatory sequences. Yeast 16(2):177-87 PMID:10641039
    • SGD Paper
    • DOI full text
    • PubMed
    • Reference supplement
  • Iraqui I, et al. (1999) Transcriptional induction by aromatic amino acids in Saccharomyces cerevisiae. Mol Cell Biol 19(5):3360-71 PMID:10207060
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Iraqui I, et al. (1999) Amino acid signaling in Saccharomyces cerevisiae: a permease-like sensor of external amino acids and F-Box protein Grr1p are required for transcriptional induction of the AGP1 gene, which encodes a broad-specificity amino acid permease. Mol Cell Biol 19(2):989-1001 PMID:9891035
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Soussi-Boudekou S and André B (1999) A co-activator of nitrogen-regulated transcription in Saccharomyces cerevisiae. Mol Microbiol 31(3):753-62 PMID:10048020
    • SGD Paper
    • DOI full text
    • PubMed
  • Springael JY, et al. (1999) NH4+-induced down-regulation of the Saccharomyces cerevisiae Gap1p permease involves its ubiquitination with lysine-63-linked chains. J Cell Sci 112 ( Pt 9):1375-83 PMID:10194416
    • SGD Paper
    • DOI full text
    • PubMed
  • Springael JY, et al. (1999) The yeast Npi1/Rsp5 ubiquitin ligase lacking its N-terminal C2 domain is competent for ubiquitination but not for subsequent endocytosis of the gap1 permease. Biochem Biophys Res Commun 257(2):561-6 PMID:10198251
    • SGD Paper
    • DOI full text
    • PubMed
  • Springael JY and André B (1998) Nitrogen-regulated ubiquitination of the Gap1 permease of Saccharomyces cerevisiae. Mol Biol Cell 9(6):1253-63 PMID:9614172
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hein C and André B (1997) A C-terminal di-leucine motif and nearby sequences are required for NH4(+)-induced inactivation and degradation of the general amino acid permease, Gap1p, of Saccharomyces cerevisiae. Mol Microbiol 24(3):607-16 PMID:9179853
    • SGD Paper
    • DOI full text
    • PubMed
  • Johnston M, et al. (1997) The nucleotide sequence of Saccharomyces cerevisiae chromosome XII. Nature 387(6632 Suppl):87-90 PMID:9169871
    • SGD Paper
    • PMC full text
    • PubMed
  • Marini AM, et al. (1997) The Rh (rhesus) blood group polypeptides are related to NH4+ transporters. Trends Biochem Sci 22(12):460-1 PMID:9433124
    • SGD Paper
    • DOI full text
    • PubMed
  • Philippsen P, et al. (1997) The nucleotide sequence of Saccharomyces cerevisiae chromosome XIV and its evolutionary implications. Nature 387(6632 Suppl):93-8 PMID:9169873
    • SGD Paper
    • PubMed
  • Soussi-Boudekou S, et al. (1997) Gzf3p, a fourth GATA factor involved in nitrogen-regulated transcription in Saccharomyces cerevisiae. Mol Microbiol 23(6):1157-68 PMID:9106207
    • SGD Paper
    • DOI full text
    • PubMed
  • André B and Scherens B (1995) The yeast YBR235w gene encodes a homolog of the mammalian electroneutral Na(+)-(K+)-C1- cotransporter family. Biochem Biophys Res Commun 217(1):150-3 PMID:8526903
    • SGD Paper
    • DOI full text
    • PubMed
  • André B, et al. (1995) Two mutually exclusive regulatory systems inhibit UASGATA, a cluster of 5'-GAT(A/T)A-3' upstream from the UGA4 gene of Saccharomyces cerevisiae. Nucleic Acids Res 23(4):558-64 PMID:7899075
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hein C, et al. (1995) NPl1, an essential yeast gene involved in induced degradation of Gap1 and Fur4 permeases, encodes the Rsp5 ubiquitin-protein ligase. Mol Microbiol 18(1):77-87 PMID:8596462
    • SGD Paper
    • DOI full text
    • PubMed
  • Talibi D, et al. (1995) Cis- and trans-acting elements determining induction of the genes of the gamma-aminobutyrate (GABA) utilization pathway in Saccharomyces cerevisiae. Nucleic Acids Res 23(4):550-7 PMID:7899074
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • André B and Springael JY (1994) WWP, a new amino acid motif present in single or multiple copies in various proteins including dystrophin and the SH3-binding Yes-associated protein YAP65. Biochem Biophys Res Commun 205(2):1201-5 PMID:7802651
    • SGD Paper
    • DOI full text
    • PubMed
  • Dujon B, et al. (1994) Complete DNA sequence of yeast chromosome XI. Nature 369(6479):371-8 PMID:8196765
    • SGD Paper
    • DOI full text
    • PubMed
  • Feldmann H, et al. (1994) Complete DNA sequence of yeast chromosome II. EMBO J 13(24):5795-809 PMID:7813418
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Marini AM, et al. (1994) Cloning and expression of the MEP1 gene encoding an ammonium transporter in Saccharomyces cerevisiae. EMBO J 13(15):3456-63 PMID:8062822
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • André B, et al. (1993) Cloning and expression of the UGA4 gene coding for the inducible GABA-specific transport protein of Saccharomyces cerevisiae. Mol Gen Genet 237(1-2):17-25 PMID:8455553
    • SGD Paper
    • DOI full text
    • PubMed
  • Coornaert D, et al. (1992) The UGA43 negative regulatory gene of Saccharomyces cerevisiae contains both a GATA-1 type zinc finger and a putative leucine zipper. Curr Genet 21(4-5):301-7 PMID:1525858
    • SGD Paper
    • DOI full text
    • PubMed
  • Coornaert D, et al. (1991) The pleiotropic UGA35(DURL) regulatory gene of Saccharomyces cerevisiae: cloning, sequence and identity with the DAL81 gene. Gene 97(2):163-71 PMID:1999281
    • SGD Paper
    • DOI full text
    • PubMed
  • André B (1990) The UGA3 gene regulating the GABA catabolic pathway in Saccharomyces cerevisiae codes for a putative zinc-finger protein acting on RNA amount. Mol Gen Genet 220(2):269-76 PMID:2109179
    • SGD Paper
    • DOI full text
    • PubMed
  • André B and Jauniaux JC (1990) Nucleotide sequence of the yeast UGA1 gene encoding GABA transaminase. Nucleic Acids Res 18(10):3049 PMID:2190186
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • André B and Jauniaux JC (1990) Nucleotide sequence of the DURM gene coding for a positive regulator of allophanate-inducible genes in Saccharomyces cerevisiae. Nucleic Acids Res 18(23):7136 PMID:2263474
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top