AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Amon A
  • References

Author: Amon A


References 112 references


No citations for this author.

Download References (.nbib)

  • Zhou X, et al. (2024) A noncanonical GTPase signaling mechanism controls exit from mitosis in budding yeast. Proc Natl Acad Sci U S A 121(45):e2413873121 PMID:39475649
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Terhorst A, et al. (2023) The environmental stress response regulates ribosome content in cell cycle-arrested S. cerevisiae. Front Cell Dev Biol 11:1118766 PMID:37123399
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Corbi D and Amon A (2021) Decreasing mitochondrial RNA polymerase activity reverses biased inheritance of hypersuppressive mtDNA. PLoS Genet 17(10):e1009808 PMID:34665800
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kane AJ, et al. (2021) Cell adaptation to aneuploidy by the environmental stress response dampens induction of the cytosolic unfolded-protein response. Mol Biol Cell 32(17):1557-1564 PMID:34191542
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zhou X, et al. (2021) Cross-compartment signal propagation in the mitotic exit network. Elife 10 PMID:33481703
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Campbell IW, et al. (2020) Spindle pole bodies function as signal amplifiers in the Mitotic Exit Network. Mol Biol Cell 31(9):906-916 PMID:32074005
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Terhorst A, et al. (2020) The environmental stress response causes ribosome loss in aneuploid yeast cells. Proc Natl Acad Sci U S A 117(29):17031-17040 PMID:32632008
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Brennan CM, et al. (2019) Protein aggregation mediates stoichiometry of protein complexes in aneuploid cells. Genes Dev 33(15-16):1031-1047 PMID:31196865
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Campbell IW, et al. (2019) The Mitotic Exit Network integrates temporal and spatial signals by distributing regulation across multiple components. Elife 8 PMID:30672733
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Neurohr GE, et al. (2019) Excessive Cell Growth Causes Cytoplasm Dilution And Contributes to Senescence. Cell 176(5):1083-1097.e18 PMID:30739799
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Carpenter K, et al. (2018) Phosphorylation-Mediated Clearance of Amyloid-like Assemblies in Meiosis. Dev Cell 45(3):392-405.e6 PMID:29738715
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Neurohr GE, et al. (2018) Deregulation of the G1/S-phase transition is the proximal cause of mortality in old yeast mother cells. Genes Dev 32(15-16):1075-1084 PMID:30042134
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Weidberg H and Amon A (2018) MitoCPR-A surveillance pathway that protects mitochondria in response to protein import stress. Science 360(6385) PMID:29650645
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Beach RR, et al. (2017) Aneuploidy Causes Non-genetic Individuality. Cell 169(2):229-242.e21 PMID:28388408
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Dodgson SE, et al. (2016) Chromosome-Specific and Global Effects of Aneuploidy in Saccharomyces cerevisiae. Genetics 202(4):1395-409 PMID:26837754
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Dodgson SE, et al. (2016) The pleiotropic deubiquitinase Ubp3 confers aneuploidy tolerance. Genes Dev 30(20):2259-2271 PMID:27807036
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Falk JE, et al. (2016) LTE1 promotes exit from mitosis by multiple mechanisms. Mol Biol Cell 27(25):3991-4001 PMID:27798238
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Falk JE, et al. (2016) Spatial signals link exit from mitosis to spindle position. Elife 5 PMID:27166637
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Torres EM, et al. (2016) No current evidence for widespread dosage compensation in S. cerevisiae. Elife 5:e10996 PMID:26949255
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Weidberg H, et al. (2016) Nutrient Control of Yeast Gametogenesis Is Mediated by TORC1, PKA and Energy Availability. PLoS Genet 12(6):e1006075 PMID:27272508
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Berchowitz LE, et al. (2015) Regulated Formation of an Amyloid-like Translational Repressor Governs Gametogenesis. Cell 163(2):406-18 PMID:26411291
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Blank HM, et al. (2015) Mitotic entry in the presence of DNA damage is a widespread property of aneuploidy in yeast. Mol Biol Cell 26(8):1440-51 PMID:25694455
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bonney ME, et al. (2015) Aneuploid proliferation defects in yeast are not driven by copy number changes of a few dosage-sensitive genes. Genes Dev 29(9):898-903 PMID:25934502
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Dephoure N, et al. (2014) Quantitative proteomic analysis reveals posttranslational responses to aneuploidy in yeast. Elife 3:e03023 PMID:25073701
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Attner MA, et al. (2013) Polo kinase Cdc5 is a central regulator of meiosis I. Proc Natl Acad Sci U S A 110(35):14278-83 PMID:23918381
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Berchowitz LE, et al. (2013) A developmentally regulated translational control pathway establishes the meiotic chromosome segregation pattern. Genes Dev 27(19):2147-63 PMID:24115771
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Goranov AI, et al. (2013) Changes in cell morphology are coordinated with cell growth through the TORC1 pathway. Curr Biol 23(14):1269-79 PMID:23810534
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rock JM, et al. (2013) Activation of the yeast Hippo pathway by phosphorylation-dependent assembly of signaling complexes. Science 340(6134):871-5 PMID:23579499
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Thorburn RR, et al. (2013) Aneuploid yeast strains exhibit defects in cell growth and passage through START. Mol Biol Cell 24(9):1274-89 PMID:23468524
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Attner MA and Amon A (2012) Control of the mitotic exit network during meiosis. Mol Biol Cell 23(16):3122-32 PMID:22718910
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Miller MP, et al. (2012) Meiosis I chromosome segregation is established through regulation of microtubule-kinetochore interactions. Elife 1:e00117 PMID:23275833
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Oromendia AB, et al. (2012) Aneuploidy causes proteotoxic stress in yeast. Genes Dev 26(24):2696-708 PMID:23222101
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Pfau SJ and Amon A (2012) Chromosomal instability and aneuploidy in cancer: from yeast to man. EMBO Rep 13(6):515-27 PMID:22614003
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sheltzer JM, et al. (2012) Transcriptional consequences of aneuploidy. Proc Natl Acad Sci U S A 109(31):12644-9 PMID:22802626
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • van Werven FJ, et al. (2012) Transcription of two long noncoding RNAs mediates mating-type control of gametogenesis in budding yeast. Cell 150(6):1170-81 PMID:22959267
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Falk JE, et al. (2011) Lte1 promotes mitotic exit by controlling the localization of the spindle position checkpoint kinase Kin4. Proc Natl Acad Sci U S A 108(31):12584-90 PMID:21709215
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rock JM and Amon A (2011) Cdc15 integrates Tem1 GTPase-mediated spatial signals with Polo kinase-mediated temporal cues to activate mitotic exit. Genes Dev 25(18):1943-54 PMID:21937712
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sheltzer JM, et al. (2011) Aneuploidy drives genomic instability in yeast. Science 333(6045):1026-30 PMID:21852501
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Unal E, et al. (2011) Gametogenesis eliminates age-induced cellular damage and resets life span in yeast. Science 332(6037):1554-7 PMID:21700873
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • van Werven FJ and Amon A (2011) Regulation of entry into gametogenesis. Philos Trans R Soc Lond B Biol Sci 366(1584):3521-31 PMID:22084379
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ünal E and Amon A (2011) Gamete formation resets the aging clock in yeast. Cold Spring Harb Symp Quant Biol 76:73-80 PMID:21890640
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Brito IL, et al. (2010) The Lrs4-Csm1 monopolin complex associates with kinetochores during anaphase and is required for accurate chromosome segregation. Cell Cycle 9(17):3611-8 PMID:20818155
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Brito IL, et al. (2010) Condensins promote coorientation of sister chromatids during meiosis I in budding yeast. Genetics 185(1):55-64 PMID:20194961
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bryan AK, et al. (2010) Measurement of mass, density, and volume during the cell cycle of yeast. Proc Natl Acad Sci U S A 107(3):999-1004 PMID:20080562
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Chan LY and Amon A (2010) Spindle position is coordinated with cell-cycle progression through establishment of mitotic exit-activating and -inhibitory zones. Mol Cell 39(3):444-54 PMID:20705245
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Corbett KD, et al. (2010) The monopolin complex crosslinks kinetochore components to regulate chromosome-microtubule attachments. Cell 142(4):556-67 PMID:20723757
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Goranov AI and Amon A (2010) Growth and division--not a one-way road. Curr Opin Cell Biol 22(6):795-800 PMID:20667436
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Torres EM, et al. (2010) Thoughts on aneuploidy. Cold Spring Harb Symp Quant Biol 75:445-51 PMID:21289044
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Torres EM, et al. (2010) Identification of aneuploidy-tolerating mutations. Cell 143(1):71-83 PMID:20850176
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Boselli M, et al. (2009) Effects of age on meiosis in budding yeast. Dev Cell 16(6):844-55 PMID:19531355
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Brar GA, et al. (2009) The multiple roles of cohesin in meiotic chromosome morphogenesis and pairing. Mol Biol Cell 20(3):1030-47 PMID:19073884
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Chan LY and Amon A (2009) The protein phosphatase 2A functions in the spindle position checkpoint by regulating the checkpoint kinase Kin4. Genes Dev 23(14):1639-49 PMID:19605686
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Goranov AI, et al. (2009) The rate of cell growth is governed by cell cycle stage. Genes Dev 23(12):1408-22 PMID:19528319
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Monje-Casas F and Amon A (2009) Cell polarity determinants establish asymmetry in MEN signaling. Dev Cell 16(1):132-45 PMID:19154724
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rock JM and Amon A (2009) The FEAR network. Curr Biol 19(23):R1063-8 PMID:20064401
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tomson BN, et al. (2009) Regulation of Spo12 phosphorylation and its essential role in the FEAR network. Curr Biol 19(6):449-60 PMID:19268588
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Amon A (2008) A decade of Cdc14--a personal perspective. Delivered on 9 July 2007 at the 32nd FEBS Congress in Vienna, Austria. FEBS J 275(23):5774-84 PMID:19021755
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Carlile TM and Amon A (2008) Meiosis I is established through division-specific translational control of a cyclin. Cell 133(2):280-91 PMID:18423199
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Jambhekar A and Amon A (2008) Control of meiosis by respiration. Curr Biol 18(13):969-75 PMID:18595705
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kiburz BM, et al. (2008) Shugoshin promotes sister kinetochore biorientation in Saccharomyces cerevisiae. Mol Biol Cell 19(3):1199-209 PMID:18094053
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rahal R and Amon A (2008) Mitotic CDKs control the metaphase-anaphase transition and trigger spindle elongation. Genes Dev 22(11):1534-48 PMID:18519644
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rahal R and Amon A (2008) The Polo-like kinase Cdc5 interacts with FEAR network components and Cdc14. Cell Cycle 7(20):3262-72 PMID:18927509
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Visintin C, et al. (2008) APC/C-Cdh1-mediated degradation of the Polo kinase Cdc5 promotes the return of Cdc14 into the nucleolus. Genes Dev 22(1):79-90 PMID:18172166
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Monje-Casas F, et al. (2007) Kinetochore orientation during meiosis is controlled by Aurora B and the monopolin complex. Cell 128(3):477-90 PMID:17289568
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Torres EM, et al. (2007) Effects of aneuploidy on cellular physiology and cell division in haploid yeast. Science 317(5840):916-24 PMID:17702937
    • SGD Paper
    • DOI full text
    • PubMed
  • Brar GA, et al. (2006) Rec8 phosphorylation and recombination promote the step-wise loss of cohesins in meiosis. Nature 441(7092):532-6 PMID:16672979
    • SGD Paper
    • DOI full text
    • PubMed
  • Hochwagen A and Amon A (2006) Checking your breaks: surveillance mechanisms of meiotic recombination. Curr Biol 16(6):R217-28 PMID:16546077
    • SGD Paper
    • DOI full text
    • PubMed
  • Huang J, et al. (2006) Inhibition of homologous recombination by a cohesin-associated clamp complex recruited to the rDNA recombination enhancer. Genes Dev 20(20):2887-901 PMID:17043313
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Reiser V, et al. (2006) The stress-activated mitogen-activated protein kinase signaling cascade promotes exit from mitosis. Mol Biol Cell 17(7):3136-46 PMID:16672381
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tomson BN, et al. (2006) Ribosomal DNA transcription-dependent processes interfere with chromosome segregation. Mol Cell Biol 26(16):6239-47 PMID:16880532
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • D'Aquino KE, et al. (2005) The protein kinase Kin4 inhibits exit from mitosis in response to spindle position defects. Mol Cell 19(2):223-34 PMID:16039591
    • SGD Paper
    • DOI full text
    • PubMed
  • Hochwagen A, et al. (2005) The FK506 binding protein Fpr3 counteracts protein phosphatase 1 to maintain meiotic recombination checkpoint activity. Cell 122(6):861-73 PMID:16179256
    • SGD Paper
    • DOI full text
    • PubMed
  • Hochwagen A, et al. (2005) Novel response to microtubule perturbation in meiosis. Mol Cell Biol 25(11):4767-81 PMID:15899877
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kiburz BM, et al. (2005) The core centromere and Sgo1 establish a 50-kb cohesin-protected domain around centromeres during meiosis I. Genes Dev 19(24):3017-30 PMID:16357219
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Seshan A and Amon A (2005) Ras and the Rho effector Cla4 collaborate to target and anchor Lte1 at the bud cortex. Cell Cycle 4(7):940-6 PMID:15917658
    • SGD Paper
    • DOI full text
    • PubMed
  • D'Amours D and Amon A (2004) At the interface between signaling and executing anaphase--Cdc14 and the FEAR network. Genes Dev 18(21):2581-95 PMID:15520278
    • SGD Paper
    • DOI full text
    • PubMed
  • D'Amours D, et al. (2004) Cdc14 and condensin control the dissolution of cohesin-independent chromosome linkages at repeated DNA. Cell 117(4):455-69 PMID:15137939
    • SGD Paper
    • DOI full text
    • PubMed
  • Lee BH, et al. (2004) Spo13 maintains centromeric cohesion and kinetochore coorientation during meiosis I. Curr Biol 14(24):2168-82 PMID:15620644
    • SGD Paper
    • DOI full text
    • PubMed
  • Marston AL, et al. (2004) A genome-wide screen identifies genes required for centromeric cohesion. Science 303(5662):1367-70 PMID:14752166
    • SGD Paper
    • DOI full text
    • PubMed
  • Seshan A and Amon A (2004) Linked for life: temporal and spatial coordination of late mitotic events. Curr Opin Cell Biol 16(1):41-8 PMID:15037303
    • SGD Paper
    • DOI full text
    • PubMed
  • Stegmeier F and Amon A (2004) Closing mitosis: the functions of the Cdc14 phosphatase and its regulation. Annu Rev Genet 38:203-32 PMID:15568976
    • SGD Paper
    • DOI full text
    • PubMed
  • Stegmeier F, et al. (2004) The replication fork block protein Fob1 functions as a negative regulator of the FEAR network. Curr Biol 14(6):467-80 PMID:15043811
    • SGD Paper
    • DOI full text
    • PubMed
  • Wiederkehr C, et al. (2004) GermOnline, a cross-species community knowledgebase on germ cell differentiation. Nucleic Acids Res 32(Database issue):D560-7 PMID:14681481
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bardin AJ, et al. (2003) Mitotic exit regulation through distinct domains within the protein kinase Cdc15. Mol Cell Biol 23(14):5018-30 PMID:12832486
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lee BH and Amon A (2003) Role of Polo-like kinase CDC5 in programming meiosis I chromosome segregation. Science 300(5618):482-6 PMID:12663816
    • SGD Paper
    • DOI full text
    • PubMed
  • Marston AL, et al. (2003) The Cdc14 phosphatase and the FEAR network control meiotic spindle disassembly and chromosome segregation. Dev Cell 4(5):711-26 PMID:12737806
    • SGD Paper
    • DOI full text
    • PubMed
  • Visintin R, et al. (2003) The role of the polo kinase Cdc5 in controlling Cdc14 localization. Mol Biol Cell 14(11):4486-98 PMID:14551257
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lee BH, et al. (2002) Spo13 regulates cohesin cleavage. Genes Dev 16(13):1672-81 PMID:12101125
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Seshan A, et al. (2002) Control of Lte1 localization by cell polarity determinants and Cdc14. Curr Biol 12(24):2098-110 PMID:12498684
    • SGD Paper
    • DOI full text
    • PubMed
  • Stegmeier F, et al. (2002) Separase, polo kinase, the kinetochore protein Slk19, and Spo12 function in a network that controls Cdc14 localization during early anaphase. Cell 108(2):207-20 PMID:11832211
    • SGD Paper
    • DOI full text
    • PubMed
  • Amon A (2001) Together until separin do us part. Nat Cell Biol 3(1):E12-4 PMID:11146641
    • SGD Paper
    • DOI full text
    • PubMed
  • Bardin AJ and Amon A (2001) Men and sin: what's the difference? Nat Rev Mol Cell Biol 2(11):815-26 PMID:11715048
    • SGD Paper
    • DOI full text
    • PubMed
  • Lee B and Amon A (2001) Meiosis: how to create a specialized cell cycle. Curr Opin Cell Biol 13(6):770-7 PMID:11698195
    • SGD Paper
    • DOI full text
    • PubMed
  • Visintin R and Amon A (2001) Regulation of the mitotic exit protein kinases Cdc15 and Dbf2. Mol Biol Cell 12(10):2961-74 PMID:11598184
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bardin AJ, et al. (2000) A mechanism for coupling exit from mitosis to partitioning of the nucleus. Cell 102(1):21-31 PMID:10929710
    • SGD Paper
    • DOI full text
    • PubMed
  • Visintin R and Amon A (2000) The nucleolus: the magician's hat for cell cycle tricks. Curr Opin Cell Biol 12(3):372-7 PMID:10801456
    • SGD Paper
    • DOI full text
    • PubMed
  • Prinz S and Amon A (1999) Dual control of mitotic exit. Nature 402(6758):133, 135 PMID:10647001
    • SGD Paper
    • DOI full text
    • PubMed
  • Stoop-Myer C and Amon A (1999) Meiosis: Rec8 is the reason for cohesion. Nat Cell Biol 1(5):E125-7 PMID:10559953
    • SGD Paper
    • DOI full text
    • PubMed
  • Visintin R, et al. (1999) Cfi1 prevents premature exit from mitosis by anchoring Cdc14 phosphatase in the nucleolus. Nature 398(6730):818-23 PMID:10235265
    • SGD Paper
    • DOI full text
    • PubMed
  • Amon A (1998) Controlling cell cycle and cell fate: common strategies in prokaryotes and eukaryotes. Proc Natl Acad Sci U S A 95(1):85-6 PMID:9419330
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hwang LH, et al. (1998) Budding yeast Cdc20: a target of the spindle checkpoint. Science 279(5353):1041-4 PMID:9461437
    • SGD Paper
    • DOI full text
    • PubMed
  • Prinz S, et al. (1998) The regulation of Cdc20 proteolysis reveals a role for APC components Cdc23 and Cdc27 during S phase and early mitosis. Curr Biol 8(13):750-60 PMID:9651679
    • SGD Paper
    • DOI full text
    • PubMed
  • Visintin R, et al. (1998) The phosphatase Cdc14 triggers mitotic exit by reversal of Cdk-dependent phosphorylation. Mol Cell 2(6):709-18 PMID:9885559
    • SGD Paper
    • DOI full text
    • PubMed
  • Amon A (1997) Regulation of B-type cyclin proteolysis by Cdc28-associated kinases in budding yeast. EMBO J 16(10):2693-702 PMID:9184216
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Prinz S, et al. (1997) Isolation of COM1, a new gene required to complete meiotic double-strand break-induced recombination in Saccharomyces cerevisiae. Genetics 146(3):781-95 PMID:9215887
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Visintin R, et al. (1997) CDC20 and CDH1: a family of substrate-specific activators of APC-dependent proteolysis. Science 278(5337):460-3 PMID:9334304
    • SGD Paper
    • DOI full text
    • PubMed
  • Amon A (1996) Mother and daughter are doing fine: asymmetric cell division in yeast. Cell 84(5):651-4 PMID:8625401
    • SGD Paper
    • DOI full text
    • PubMed
  • Amon A, et al. (1994) Closing the cell cycle circle in yeast: G2 cyclin proteolysis initiated at mitosis persists until the activation of G1 cyclins in the next cycle. Cell 77(7):1037-50 PMID:8020094
    • SGD Paper
    • DOI full text
    • PubMed
  • Amon A, et al. (1993) Mechanisms that help the yeast cell cycle clock tick: G2 cyclins transcriptionally activate G2 cyclins and repress G1 cyclins. Cell 74(6):993-1007 PMID:8402888
    • SGD Paper
    • DOI full text
    • PubMed
  • Surana U, et al. (1993) Destruction of the CDC28/CLB mitotic kinase is not required for the metaphase to anaphase transition in budding yeast. EMBO J 12(5):1969-78 PMID:8491189
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Amon A, et al. (1992) Regulation of p34CDC28 tyrosine phosphorylation is not required for entry into mitosis in S. cerevisiae. Nature 355(6358):368-71 PMID:1731251
    • SGD Paper
    • DOI full text
    • PubMed
  • Fitch I, et al. (1992) Characterization of four B-type cyclin genes of the budding yeast Saccharomyces cerevisiae. Mol Biol Cell 3(7):805-18 PMID:1387566
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top