AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Alepuz P
  • References

Author: Alepuz P


References 30 references


No citations for this author.

Download References (.nbib)

  • Barba-Aliaga M, et al. (2024) eIF5A controls mitoprotein import by relieving ribosome stalling at TIM50 translocase mRNA. J Cell Biol 223(12) PMID:39509053
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Seoane R, et al. (2024) SUMOylation modulates eIF5A activities in both yeast and pancreatic ductal adenocarcinoma cells. Cell Mol Biol Lett 29(1):15 PMID:38229033
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Xiao Y, et al. (2024) eIF5A promotes +1 programmed ribosomal frameshifting in Euplotes octocarinatus. Int J Biol Macromol 254(Pt 1):127743 PMID:38287569
    • SGD Paper
    • DOI full text
    • PubMed
  • Barba-Aliaga M and Alepuz P (2022) The activator/repressor Hap1 binds to the yeast eIF5A-encoding gene TIF51A to adapt its expression to the mitochondrial functional status. FEBS Lett 596(14):1809-1826 PMID:35490374
    • SGD Paper
    • DOI full text
    • PubMed
  • Jordá T, et al. (2022) Transcriptional regulation of ergosterol biosynthesis genes in response to iron deficiency. Environ Microbiol 24(11):5248-5260 PMID:36382795
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Begley V, et al. (2021) Xrn1 influence on gene transcription results from the combination of general effects on elongating RNA pol II and gene-specific chromatin configuration. RNA Biol 18(9):1310-1323 PMID:33138675
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • García-Martínez J, et al. (2021) Recruitment of Xrn1 to stress-induced genes allows efficient transcription by controlling RNA polymerase II backtracking. RNA Biol 18(10):1458-1474 PMID:33258404
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Barba-Aliaga M, et al. (2020) Yeast Translation Elongation Factor eIF5A Expression Is Regulated by Nutrient Availability through Different Signalling Pathways. Int J Mol Sci 22(1) PMID:33379337
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Pérez-Martínez ME, et al. (2020) Nut1/Hos1 and Sas2/Rpd3 control the H3 acetylation of two different sets of osmotic stress-induced genes. Epigenetics 15(3):251-271 PMID:31512982
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Romero AM, et al. (2020) Global translational repression induced by iron deficiency in yeast depends on the Gcn2/eIF2α pathway. Sci Rep 10(1):233 PMID:31937829
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Quilis I, et al. (2019) Karyopherin Msn5 is involved in a novel mechanism controlling the cellular level of cell cycle regulators Cln2 and Swi5. Cell Cycle 18(5):580-595 PMID:30739521
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Garre E, et al. (2018) The Lsm1-7/Pat1 complex binds to stress-activated mRNAs and modulates the response to hyperosmotic shock. PLoS Genet 14(7):e1007563 PMID:30059503
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ramos-Alonso L, et al. (2018) Yeast Cth2 protein represses the translation of ARE-containing mRNAs in response to iron deficiency. PLoS Genet 14(6):e1007476 PMID:29912874
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ballester-Tomás L, et al. (2017) Inappropriate translation inhibition and P-body formation cause cold-sensitivity in tryptophan-auxotroph yeast mutants. Biochim Biophys Acta Mol Cell Res 1864(2):314-323 PMID:27864078
    • SGD Paper
    • DOI full text
    • PubMed
  • Benet M, et al. (2017) Modulation of protein synthesis and degradation maintains proteostasis during yeast growth at different temperatures. Biochim Biophys Acta Gene Regul Mech 1860(7):794-802 PMID:28461260
    • SGD Paper
    • DOI full text
    • PubMed
  • Miguel A, et al. (2017) Corrigendum to "External conditions inversely change the RNA polymerase II elongation rate and density in yeast" [Biochim. Biophys. Acta 1829/11 (2013) 1248-1255]. Biochim Biophys Acta Gene Regul Mech 1860(2):289 PMID:27875711
    • SGD Paper
    • DOI full text
    • PubMed
  • Muñoz-Soriano V, et al. (2017) Evolutionary conserved role of eukaryotic translation factor eIF5A in the regulation of actin-nucleating formins. Sci Rep 7(1):9580 PMID:28852021
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Pelechano V and Alepuz P (2017) eIF5A facilitates translation termination globally and promotes the elongation of many non polyproline-specific tripeptide sequences. Nucleic Acids Res 45(12):7326-7338 PMID:28549188
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Li T, et al. (2016) The mRNA cap-binding protein Cbc1 is required for high and timely expression of genes by promoting the accumulation of gene-specific activators at promoters. Biochim Biophys Acta 1859(2):405-19 PMID:26775127
    • SGD Paper
    • DOI full text
    • PubMed
  • van Wijlick L, et al. (2016) Dom34 Links Translation to Protein O-mannosylation. PLoS Genet 12(10):e1006395 PMID:27768707
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Canadell D, et al. (2015) Impact of high pH stress on yeast gene expression: A comprehensive analysis of mRNA turnover during stress responses. Biochim Biophys Acta 1849(6):653-64 PMID:25900709
    • SGD Paper
    • DOI full text
    • PubMed
  • Zuzuarregui A, et al. (2015) Msb2 is a Ste11 membrane concentrator required for full activation of the HOG pathway. Biochim Biophys Acta 1849(6):722-30 PMID:25689021
    • SGD Paper
    • DOI full text
    • PubMed
  • Li T, et al. (2014) Fertility and polarized cell growth depends on eIF5A for translation of polyproline-rich formins in Saccharomyces cerevisiae. Genetics 197(4):1191-200 PMID:24923804
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Garre E, et al. (2013) Nonsense-mediated mRNA decay controls the changes in yeast ribosomal protein pre-mRNAs levels upon osmotic stress. PLoS One 8(4):e61240 PMID:23620734
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gomar-Alba M, et al. (2013) Dissection of the elements of osmotic stress response transcription factor Hot1 involved in the interaction with MAPK Hog1 and in the activation of transcription. Biochim Biophys Acta 1829(10):1111-25 PMID:23916462
    • SGD Paper
    • DOI full text
    • PubMed
  • Miguel A, et al. (2013) External conditions inversely change the RNA polymerase II elongation rate and density in yeast. Biochim Biophys Acta 1829(11):1248-55 PMID:24103494
    • SGD Paper
    • DOI full text
    • PubMed
  • Garre E, et al. (2012) Yeast mRNA cap-binding protein Cbc1/Sto1 is necessary for the rapid reprogramming of translation after hyperosmotic shock. Mol Biol Cell 23(1):137-50 PMID:22072789
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Marín-Navarro J, et al. (2011) Global estimation of mRNA stability in yeast. Methods Mol Biol 734:3-23 PMID:21468982
    • SGD Paper
    • DOI full text
    • PubMed
  • Romero-Santacreu L, et al. (2010) The bidirectional cytomegalovirus immediate/early promoter is regulated by Hog1 and the stress transcription factors Sko1 and Hot1 in yeast. Mol Genet Genomics 283(5):511-8 PMID:20364387
    • SGD Paper
    • DOI full text
    • PubMed
  • Romero-Santacreu L, et al. (2009) Specific and global regulation of mRNA stability during osmotic stress in Saccharomyces cerevisiae. RNA 15(6):1110-20 PMID:19369426
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
    • Reference supplement
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top