AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Aldea M
  • References

Author: Aldea M


References 42 references


No citations for this author.

Download References (.nbib)

  • Vidal PJ, et al. (2024) Transcriptomic balance and optimal growth are determined by cell size. Mol Cell 84(17):3288-3301.e3 PMID:39084218
    • SGD Paper
    • DOI full text
    • PubMed
  • González B, et al. (2023) Chaperone-Dependent Degradation of Cdc42 Promotes Cell Polarity and Shields the Protein from Aggregation. Mol Cell Biol 43(5):200-222 PMID:37114947
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Pérez AP, et al. (2022) Mad3 modulates the G1 Cdk and acts as a timer in the Start network. Sci Adv 8(18):eabm4086 PMID:35522754
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Schmoller KM, et al. (2022) Whi5 is diluted and protein synthesis does not dramatically increase in pre-Start G1. Mol Biol Cell 33(5):lt1 PMID:35482510
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yahya G, et al. (2021) Stress granules display bistable dynamics modulated by Cdk. J Cell Biol 220(3) PMID:33480968
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Moreno DF and Aldea M (2020) Proteostatic stress as a nodal hallmark of replicative aging. Exp Cell Res 394(2):112163 PMID:32640194
    • SGD Paper
    • DOI full text
    • PubMed
  • Moreno DF, et al. (2019) Competition in the chaperone-client network subordinates cell-cycle entry to growth and stress. Life Sci Alliance 2(2) PMID:30988162
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Moreno DF, et al. (2019) Proteostasis collapse, a hallmark of aging, hinders the chaperone-Start network and arrests cells in G1. Elife 8 PMID:31518229
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Martínez-Láinez JM, et al. (2018) Centromeric signaling proteins boost G1 cyclin degradation and modulate cell size in budding yeast. PLoS Biol 16(8):e2005388 PMID:30080861
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Parisi E, et al. (2018) Cdc48/p97 segregase is modulated by cyclin-dependent kinase to determine cyclin fate during G1 progression. EMBO J 37(16) PMID:29950310
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Aldea M, et al. (2017) Growth Rate as a Direct Regulator of the Start Network to Set Cell Size. Front Cell Dev Biol 5:57 PMID:28603712
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Saarikangas J, et al. (2017) Compartmentalization of ER-Bound Chaperone Confines Protein Deposit Formation to the Aging Yeast Cell. Curr Biol 27(6):773-783 PMID:28262489
    • SGD Paper
    • DOI full text
    • PubMed
  • Deniz Ö, et al. (2016) Nucleosome architecture throughout the cell cycle. Sci Rep 6:19729 PMID:26818620
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yahya G, et al. (2014) A Whi7-anchored loop controls the G1 Cdk-cyclin complex at start. Mol Cell 53(1):115-26 PMID:24374311
    • SGD Paper
    • DOI full text
    • PubMed
  • Menoyo S, et al. (2013) Phosphate-activated cyclin-dependent kinase stabilizes G1 cyclin to trigger cell cycle entry. Mol Cell Biol 33(7):1273-84 PMID:23339867
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ferrezuelo F, et al. (2012) The critical size is set at a single-cell level by growth rate to attain homeostasis and adaptation. Nat Commun 3:1012 PMID:22910358
    • SGD Paper
    • DOI full text
    • PubMed
  • Ferrezuelo F, et al. (2010) The transcriptional network activated by Cln3 cyclin at the G1-to-S transition of the yeast cell cycle. Genome Biol 11(6):R67 PMID:20573214
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Colomina N, et al. (2009) Whi3 regulates morphogenesis in budding yeast by enhancing Cdk functions in apical growth. Cell Cycle 8(12):1912-20 PMID:19440046
    • SGD Paper
    • DOI full text
    • PubMed
  • Ferrezuelo F, et al. (2009) Bck2 is a phase-independent activator of cell cycle-regulated genes in yeast. Cell Cycle 8(2):239-52 PMID:19158491
    • SGD Paper
    • DOI full text
    • PubMed
  • Colomina N, et al. (2008) Whi3, a developmental regulator of budding yeast, binds a large set of mRNAs functionally related to the endoplasmic reticulum. J Biol Chem 283(42):28670-9 PMID:18667435
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Aldea M, et al. (2007) Control of cell cycle and cell growth by molecular chaperones. Cell Cycle 6(21):2599-603 PMID:17957140
    • SGD Paper
    • DOI full text
    • PubMed
  • Vergés E, et al. (2007) Cyclin Cln3 is retained at the ER and released by the J chaperone Ydj1 in late G1 to trigger cell cycle entry. Mol Cell 26(5):649-62 PMID:17560371
    • SGD Paper
    • DOI full text
    • PubMed
  • Clotet J, et al. (2006) Phosphorylation of Hsl1 by Hog1 leads to a G2 arrest essential for cell survival at high osmolarity. EMBO J 25(11):2338-46 PMID:16688223
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wang H, et al. (2004) Recruitment of Cdc28 by Whi3 restricts nuclear accumulation of the G1 cyclin-Cdk complex to late G1. EMBO J 23(1):180-90 PMID:14685274
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Colomina N, et al. (2003) TOR regulates the subcellular localization of Ime1, a transcriptional activator of meiotic development in budding yeast. Mol Cell Biol 23(20):7415-24 PMID:14517308
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ferrezuelo F, et al. (2002) Biogenesis of yeast telomerase depends on the importin mtr10. Mol Cell Biol 22(17):6046-55 PMID:12167699
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bellí G, et al. (2001) Osmotic stress causes a G1 cell cycle delay and downregulation of Cln3/Cdc28 activity in Saccharomyces cerevisiae. Mol Microbiol 39(4):1022-35 PMID:11251821
    • SGD Paper
    • DOI full text
    • PubMed
  • Garí E, et al. (2001) Whi3 binds the mRNA of the G1 cyclin CLN3 to modulate cell fate in budding yeast. Genes Dev 15(21):2803-8 PMID:11691832
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Clotet J, et al. (1999) The yeast ser/thr phosphatases sit4 and ppz1 play opposite roles in regulation of the cell cycle. Mol Cell Biol 19(3):2408-15 PMID:10022927
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Colomina N, et al. (1999) G1 cyclins block the Ime1 pathway to make mitosis and meiosis incompatible in budding yeast. EMBO J 18(2):320-9 PMID:9889189
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bellí G, et al. (1998) An activator/repressor dual system allows tight tetracycline-regulated gene expression in budding yeast. Nucleic Acids Res 26(4):942-7 PMID:9461451
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bellí G, et al. (1998) Functional analysis of yeast essential genes using a promoter-substitution cassette and the tetracycline-regulatable dual expression system. Yeast 14(12):1127-38 PMID:9778798
    • SGD Paper
    • DOI full text
    • PubMed
  • Casas C, et al. (1997) The AFT1 transcriptional factor is differentially required for expression of high-affinity iron uptake genes in Saccharomyces cerevisiae. Yeast 13(7):621-37 PMID:9200812
    • SGD Paper
    • DOI full text
    • PubMed
  • Dujon B, et al. (1997) The nucleotide sequence of Saccharomyces cerevisiae chromosome XV. Nature 387(6632 Suppl):98-102 PMID:9169874
    • SGD Paper
    • PubMed
  • Gallego C, et al. (1997) The Cln3 cyclin is down-regulated by translational repression and degradation during the G1 arrest caused by nitrogen deprivation in budding yeast. EMBO J 16(23):7196-206 PMID:9384596
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Aldea M, et al. (1996) Sequence analysis of a 12 801 bp fragment of the left arm of yeast chromosome XV containing a putative 6-phosphofructo-2-kinase gene, a gene for a possible glycophospholipid-anchored surface protein and six other open reading frames. Yeast 12(10B Suppl):1053-8 PMID:8896270
    • SGD Paper
    • DOI full text
    • PubMed
  • Casamayor A, et al. (1996) Sequence analysis of a 13.4 kbp fragment from the left arm of chromosome XV reveals a malate dehydrogenase gene, a putative Ser/Thr protein kinase, the ribosomal L25 gene and four new open reading frames. Yeast 12(10B Suppl):1013-20 PMID:8896265
    • SGD Paper
    • DOI full text
    • PubMed
  • Gamo FJ, et al. (1996) Analysis of the DNA sequence of a 15,500 bp fragment near the left telomere of chromosome XV from Saccharomyces cerevisiae reveals a putative sugar transporter, a carboxypeptidase homologue and two new open reading frames. Yeast 12(7):709-14 PMID:8810044
    • SGD Paper
    • DOI full text
    • PubMed
  • Casamayor A, et al. (1995) DNA sequence analysis of a 13 kbp fragment of the left arm of yeast chromosome XV containing seven new open reading frames. Yeast 11(13):1281-8 PMID:8553699
    • SGD Paper
    • DOI full text
    • PubMed
  • Casas C, et al. (1995) Sequence analysis of a 9873 bp fragment of the left arm of yeast chromosome XV that contains the ARG8 and CDC33 genes, a putative riboflavin synthase beta chain gene, and four new open reading frames. Yeast 11(11):1061-7 PMID:7502581
    • SGD Paper
    • DOI full text
    • PubMed
  • Espinet C, et al. (1995) An efficient method to isolate yeast genes causing overexpression-mediated growth arrest. Yeast 11(1):25-32 PMID:7762298
    • SGD Paper
    • DOI full text
    • PubMed
  • Aldea M, et al. (1994) The yeast cell cycle: positive and negative controls. Microbiologia 10(1-2):27-36 PMID:7946125
    • SGD Paper
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top