Reference: Yap K, et al. (2025) Yeast as a tool for exploring disulfide-rich peptides. FEMS Yeast Res

Reference Help

Abstract


Cyclic disulfide-rich peptides have become increasingly popular in drug development because their structures enhance molecular stability and allow for mutagenesis to introduce non-native functions. This review focuses on yeast-based platform technologies and their utility in advancing cyclic disulfide-rich peptides as drug modalities and for large-scale biomanufacturing. These technologies include yeast surface display which facilitates the screening of large libraries to develop peptide binders with a strong affinity and selectivity for protein targets, while maintaining the innate high stability of the peptide scaffold via protease-based selection pressure. We also describe a recently developed platform that leverages yeast's ability to secrete correctly folded disulfide-rich peptides while simultaneously displaying peptide or protein tags on their surfaces. In combination with microfluidics technology, the platform creates single-cell yeast-in-droplets reactors, enabling the screening of large libraries based on functional output rather than solely on binding affinity. After identifying cyclic peptide candidates through library-based discovery, these candidates can be produced using a versatile yeast-based bioproduction platform. Traditionally, cyclic disulfide-rich peptides are produced through solid-phase synthesis, a method that generates significant amounts of toxic waste. In contrast, yeast-based bioproduction offers an environmentally sustainable alternative. It has the capability to produce structurally distinct peptides with minimal adjustments and is easily scalable using microbial fermenters, making it an ideal choice for large-scale production.

Reference Type
Journal Article
Authors
Yap K, Porth OT, Xie J, Wang CK, Durek T, Wittrup KD, Craik DJ
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference