Reference: Henriques D, et al. (2023) A Dynamic Genome-Scale Model Identifies Metabolic Pathways Associated with Cold Tolerance in Saccharomyces kudriavzevii. Microbiol Spectr 11(3):e0351922

Reference Help

Abstract


Saccharomyces kudriavzevii is a cold-tolerant species identified as a good alternative for industrial winemaking. Although S. kudriavzevii has never been found in winemaking, its co-occurrence with Saccharomyces cerevisiae in Mediterranean oaks is well documented. This sympatric association is believed to be possible due to the different growth temperatures of the two yeast species. However, the mechanisms behind the cold tolerance of S. kudriavzevii are not well understood. In this work, we propose the use of a dynamic genome-scale model to compare the metabolic routes used by S. kudriavzevii at two temperatures, 25°C and 12°C, to decipher pathways relevant to cold tolerance. The model successfully recovered the dynamics of biomass and external metabolites and allowed us to link the observed phenotype with exact intracellular pathways. The model predicted fluxes that are consistent with previous findings, but it also led to novel results which we further confirmed with intracellular metabolomics and transcriptomic data. The proposed model (along with the corresponding code) provides a comprehensive picture of the mechanisms of cold tolerance that occur within S. kudriavzevii. The proposed strategy offers a systematic approach to explore microbial diversity from extracellular fermentation data at low temperatures. IMPORTANCE Nonconventional yeasts promise to provide new metabolic pathways for producing industrially relevant compounds and tolerating specific stressors such as cold temperatures. The mechanisms behind the cold tolerance of S. kudriavzevii or its sympatric relationship with S. cerevisiae in Mediterranean oaks are not well understood. This study proposes a dynamic genome-scale model to investigate metabolic pathways relevant to cold tolerance. The predictions of the model would indicate the ability of S. kudriavzevii to produce assimilable nitrogen sources from extracellular proteins present in its natural niche. These predictions were further confirmed with metabolomics and transcriptomic data. This finding suggests that not only the different growth temperature preferences but also this proteolytic activity may contribute to the sympatric association with S. cerevisiae. Further exploration of these natural adaptations could lead to novel engineering targets for the biotechnological industry.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Henriques D, Minebois R, Dos Santos D, Barrio E, Querol A, Balsa-Canto E
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference