Minebois R, et al. (2025) Combined Isotopic Tracer and Modelling Approach Reveals Differences in Nitrogen Metabolism in S. cerevisiae, S. uvarum and S. kudriavzevii Species. Microb Biotechnol 18(4):e70087 PMID:40251794
Moimenta AR, et al. (2025) An integrated multiphase dynamic genome-scale model explains batch fermentations led by species of the Saccharomyces genus. mSystems 10(2):e0161524 PMID:39840996
Henriques D, et al. (2023) A Dynamic Genome-Scale Model Identifies Metabolic Pathways Associated with Cold Tolerance in Saccharomyces kudriavzevii. Microbiol Spectr 11(3):e0351922 PMID:37227304
Moimenta AR, et al. (2023) Modelling the physiological status of yeast during wine fermentation enables the prediction of secondary metabolism. Microb Biotechnol 16(4):847-861 PMID:36722662
Scott WT, et al. (2023) Dynamic genome-scale modeling of Saccharomyces cerevisiae unravels mechanisms for ester formation during alcoholic fermentation. Biotechnol Bioeng 120(7):1998-2012 PMID:37159408
Henriques D and Balsa-Canto E (2021) The Monod Model Is Insufficient To Explain Biomass Growth in Nitrogen-Limited Yeast Fermentation. Appl Environ Microbiol 87(20):e0108421 PMID:34347510
Henriques D, et al. (2021) A Multiphase Multiobjective Dynamic Genome-Scale Model Shows Different Redox Balancing among Yeast Species of the Saccharomyces Genus in Fermentation. mSystems 6(4):e0026021 PMID:34342535
Balsa-Canto E, et al. (2020) Temperature Shapes Ecological Dynamics in Mixed Culture Fermentations Driven by Two Species of the Saccharomyces Genus. Front Bioeng Biotechnol 8:915 PMID:32974297
Henriques D, et al. (2018)Saccharomyces cerevisiae and S. kudriavzevii Synthetic Wine Fermentation Performance Dissected by Predictive Modeling. Front Microbiol 9:88 PMID:29456524