Reference: Yamamoto Y, et al. (2023) Construction of a machine-learning model to predict the optimal gene expression level for efficient production of D-lactic acid in yeast. World J Microbiol Biotechnol 39(3):69

Reference Help

Abstract


The modification of gene expression is being researched in the production of useful chemicals by metabolic engineering of the yeast Saccharomyces cerevisiae. When the expression levels of many metabolic enzyme genes are modified simultaneously, the expression ratio of these genes becomes diverse; the relationship between the gene expression ratio and chemical productivity remains unclear. In other words, it is challenging to predict phenotypes from genotypes. However, the productivity of useful chemicals can be improved if this relationship is clarified. In this study, we aimed to construct a machine-learning model that can be used to clarify the relationship between gene expression levels and D-lactic acid productivity and predict the optimal gene expression level for efficient D-lactic acid production in yeast. A machine-learning model was constructed using data on D-lactate dehydrogenase and glycolytic genes expression (13 dimensions) and D-lactic acid productivity. The coefficient of determination of the completed machine-learning model was 0.6932 when using the training data and 0.6628 when using the test data. Using the constructed machine-learning model, we predicted the optimal gene expression level for high D-lactic acid production. We successfully constructed a machine-learning model to predict both D-lactic acid productivity and the suitable gene expression ratio for the production of D-lactic acid. The technique established in this study could be key for predicting phenotypes from genotypes, a problem faced by recent metabolic engineering strategies.

Reference Type
Journal Article
Authors
Yamamoto Y, Yamada R, Matsumoto T, Ogino H
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference