Shimazaki S, et al. (2024) Building a machine-learning model to predict optimal mevalonate pathway gene expression levels for efficient production of a carotenoid in yeast. Biotechnol J 19(1):e2300285 PMID:37953664
Yamada R, et al. (2024) Development of a metabolic engineering technology to simultaneously suppress the expression of multiple genes in yeast and application in carotenoid production. World J Microbiol Biotechnol 40(7):227 PMID:38822932
Yamada R, et al. (2024) Induction of point and structural mutations in engineered yeast Saccharomyces cerevisiae improve carotenoid production. World J Microbiol Biotechnol 40(7):230 PMID:38829459
Matsumoto T, et al. (2023) Enhancing 3-hydroxypropionic acid production in Saccharomyces cerevisiae through enzyme localization within mitochondria. Biochem Biophys Res Commun 680:1-6 PMID:37703602
Yamamoto Y, et al. (2023) Construction of a machine-learning model to predict the optimal gene expression level for efficient production of D-lactic acid in yeast. World J Microbiol Biotechnol 39(3):69 PMID:36607503
Mitsui R, et al. (2022) Bioengineering for the industrial production of 2,3-butanediol by the yeast, Saccharomyces cerevisiae. World J Microbiol Biotechnol 38(3):38 PMID:35018511
Yamada R, et al. (2022) Improving carotenoid production in recombinant yeast, Saccharomyces cerevisiae, using ultrasound-irradiated two-phase extractive fermentation. Eng Life Sci 22(1):4-12 PMID:35024023
Mizobata A, et al. (2021) Improvement of 2,3-butanediol tolerance in Saccharomyces cerevisiae by using a novel mutagenesis strategy. J Biosci Bioeng 131(3):283-289 PMID:33277188
Yamada R, et al. (2021) Improvement of lactic acid tolerance by cocktail δ-integration strategy and identification of the transcription factor PDR3 responsible for lactic acid tolerance in yeast Saccharomyces cerevisiae. World J Microbiol Biotechnol 37(2):19 PMID:33428004
Mitsui R, et al. (2020) Construction of lactic acid-tolerant Saccharomyces cerevisiae by using CRISPR-Cas-mediated genome evolution for efficient D-lactic acid production. Appl Microbiol Biotechnol 104(21):9147-9158 PMID:32960291
Mitsui R, et al. (2019) CRISPR system in the yeast Saccharomyces cerevisiae and its application in the bioproduction of useful chemicals. World J Microbiol Biotechnol 35(7):111 PMID:31280424
Sasaki Y, et al. (2019) Secretory overexpression of the endoglucanase by Saccharomyces cerevisiae via CRISPR-δ-integration and multiple promoter shuffling. Enzyme Microb Technol 121:17-22 PMID:30554640
Yamada R, et al. (2018) Rapid and stable production of 2,3-butanediol by an engineered Saccharomyces cerevisiae strain in a continuous airlift bioreactor. J Ind Microbiol Biotechnol 45(5):305-311 PMID:29605870
Yamada R, et al. (2017) Global Metabolic Engineering of Glycolytic Pathway via Multicopy Integration in Saccharomyces cerevisiae. ACS Synth Biol 6(4):659-666 PMID:28080037
Yamada R, et al. (2017) Enhanced d-lactic acid production by recombinant Saccharomyces cerevisiae following optimization of the global metabolic pathway. Biotechnol Bioeng 114(9):2075-2084 PMID:28475210
Mimitsuka T, et al. (2015) Production of D-lactic acid in a continuous membrane integrated fermentation reactor by genetically modified Saccharomyces cerevisiae: enhancement in D-lactic acid carbon yield. J Biosci Bioeng 119(1):65-71 PMID:25132509