Reference: Yoshida M, et al. (2022) Wine Yeast Cells Acquire Resistance to Severe Ethanol Stress and Suppress Insoluble Protein Accumulation during Alcoholic Fermentation. Microbiol Spectr 10(5):e0090122

Reference Help

Abstract


Under laboratory conditions, acute 10% (vol/vol) ethanol stress causes protein denaturation and accumulation of insoluble proteins in yeast cells. However, yeast cells can acquire resistance to severe ethanol stress by pretreatment with mild ethanol stress (6% vol/vol) and mitigate insoluble protein accumulation under subsequent exposure to 10% (vol/vol) ethanol. On the other hand, protein quality control (PQC) of yeast cells during winemaking remains poorly understood. Ethanol concentrations in the grape must increase gradually, rather than acutely, to more than 10% (vol/vol) during the winemaking process. Gradual increases in ethanol evoke two possibilities for yeast PQC under high ethanol concentrations in the must: suppression of insoluble protein accumulation through the acquisition of resistance or the accumulation of denatured insoluble proteins. We examined these two possibilities by conducting alcoholic fermentation tests at 15°C that mimic white winemaking using synthetic grape must (SGM). The results obtained revealed the negligible accumulation of insoluble proteins in wine yeast cells throughout the fermentation process. Furthermore, wine yeast cells in fermenting SGM did not accumulate insoluble proteins when transferred to synthetic defined (SD) medium containing 10% (vol/vol) ethanol. Conversely, yeast cells cultured in SD medium accumulated insoluble proteins when transferred to fermented SGM containing 9.8% (vol/vol) ethanol. Thus, wine yeast cells acquire resistance to the cellular impact of severe ethanol stress during fermentation and mitigate the accumulation of insoluble proteins. This study provides novel insights into the PQC and robustness of wine yeast during winemaking. IMPORTANCE Winemaking is a dynamic and complex process in which ethanol concentrations gradually increase to reach >10% (vol/vol) through alcoholic fermentation. However, there is little information on protein damage in wine yeast during winemaking. We investigated the insoluble protein levels of wine yeast under laboratory conditions in SD medium and during fermentation in SGM. Under laboratory conditions, wine yeast cells, as well as laboratory strain cells, accumulated insoluble proteins under acute 10% (vol/vol) ethanol stress, and this accumulation was suppressed by pretreatment with 6% (vol/vol) ethanol. During the fermentation process, insoluble protein levels were maintained at low levels in wine yeast even when the SGM ethanol concentration exceeded 10% (vol/vol). These results indicate that the progression of wine yeast through fermentation in SGM results in stress tolerance, similar to the pretreatment of cells with mild ethanol stress. These findings further the understanding of yeast cell physiology during winemaking.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Yoshida M, Furutani N, Imai F, Miki T, Izawa S
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference