Reference: Zhang G, et al. (2022) Dual β-oxidation pathway and transcription factor engineering for methyl ketones production in Saccharomyces cerevisiae. Metab Eng 73:225-234

Reference Help

Abstract


Methyl ketones (MK) are highly valuable fatty acid derivatives with broad applications. Microbes based biosynthesis represents an alternative route for production of these usually fossil based chemicals. In this study, we reported metabolic engineering of Saccharomyces cerevisiae to produce MK, including 2-nonanone, 2-undecanone, 2-tridecanone and 2-pentadecanone. Besides enhancing inherent peroxisomal fatty acids β-oxidation cycle, a novel heterologous cytosolic fatty acids β-oxidation pathway was constructed, and this resulted in an increased production of MK by 2-fold. To increase carbon fluxes to methyl ketones, the supply of precursors was enhanced by engineering lipid metabolism, including improving the intracellular biosynthesis of acyl-CoAs, weakening the consumption of acyl-CoAs for lipids storage, and reinforcing activation of free fatty acids to acyl-CoAs. Hereby the titer of MK was improved by 7-fold, reaching 143.72 mg/L. Finally, transcription factor engineering was employed to increase the biosynthesis of methyl ketones and it was found that overexpression of ADR1 can mimic the oleate activated biogenesis and proliferation of peroxisomes, which resulted in a further increased production of MK by 28%. With these modifications and optimization, up to 845 mg/L total MK were produced from glucose in fed-batch fermentation, which is the highest titer of methyl ketones reported produced by fungi.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Zhang G, Zhang C, Wang Z, Wang Q, Nielsen J, Dai Z
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference