Reference: Negoro H, et al. (2020) Effects of mutations of GID protein-coding genes on malate production and enzyme expression profiles in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 104(11):4971-4983

Reference Help

Abstract


During alcohol fermentation, Saccharomyces cerevisiae produces organic acids, including succinate, acetate, and malate. Since malate contributes to the pleasant flavor of sake (a Japanese alcoholic beverage), various methods for breeding high-malate-producing yeast have been developed. We previously isolated a high-malate-producing strain and found that a missense mutation in GID4 was responsible for the high-malate-producing phenotype. Gid4 is a component of the GID (glucose-induced degradation-deficient) complex and stimulates the catabolic degradation of gluconeogenic enzymes. In this study, the mechanism by which this mutation led to high malate production in yeast cells was investigated. The evaluation of disruptants and mutants of gluconeogenic enzymes revealed that cytosolic malate dehydrogenase (Mdh2) participated in the malate production. Furthermore, target proteome analysis indicated that an increase in malate production resulted from the accumulation of Mdh2 in gid4 disruptant due to the loss of GID complex-mediated degradation. Next, we investigated the effects of GID protein-coding genes (GID1-GID9) on organic acid production and enzyme expression profiles in yeast. The disruptants of GID1, 2, 3, 4, 5, 8, and 9 exhibited high malate production. Comparison of protein abundance among the GID disruptants revealed variations in protein expression profiles, including in glycolysis and tricarboxylic acid cycle-related enzymes. The high-malate-producing disruptants showed the activation of several glycolytic enzymes and a reduction in enzymes involved in the conversion of pyruvate to ethanol. Our results suggest that high-malate-producing disruptants adapt their metabolism to produce malate in excess via the regulation of protein expression in glucose assimilation and ethanol fermentation. KEY POINTS: An increase in malate level of GID4 mutant resulted from the accumulation of Mdh2. The disruptants of GID1, 2, 3, 4, 5, 8, and 9 showed high malate production. The protein expression profiles in the GID disruptants differed from one another.

Reference Type
Journal Article
Authors
Negoro H, Matsumura K, Matsuda F, Shimizu H, Hata Y, Ishida H
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference