Reference: Randez-Gil F, et al. (2020) The formation of hybrid complexes between isoenzymes of glyceraldehyde-3-phosphate dehydrogenase regulates its aggregation state, the glycolytic activity and sphingolipid status in Saccharomyces cerevisiae. Microb Biotechnol 13(2):562-571

Reference Help

Abstract


The glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been traditionally considered a housekeeping protein involved in energy generation. However, evidence indicates that GAPDHs from different origins are tightly regulated and that this regulation may be on the basis of glycolysis-related and glycolysis-unrelated functions. In Saccharomyces cerevisiae, Tdh3 is the main GAPDH, although two other isoenzymes encoded by TDH1 and TDH2 have been identified. Like other GAPDHs, Tdh3 exists predominantly as a tetramer, although dimeric and monomeric forms have also been isolated. Mechanisms of Tdh3 regulation may thus imply changes in its oligomeric state or be based in its ability to interact with Tdh1 and/or Tdh2 to form hybrid complexes. However, no direct evidence of the existence of these interactions has been provided and the exact function of Tdh1,2 is unknown. Here, we show that Tdh1,2 immunopurified with a GFP-tagged version of Tdh3 and that lack of this interaction stimulates the Tdh3's aggregation. Furthermore, we found that the combined knockout of TDH1 and TDH2 promotes the loss of cell's viability and increases the growing rate, glucose consumption and CO2 production, suggesting a higher glycolytic flux in the mutant cells. Consistent with this, the tdh3 strain, which displays impaired in vitro GAPDH activity, exhibited the opposite phenotypes. Quite remarkably, tdh1 tdh2 mutant cells show increased sensitivity to aureobasidin A, an inhibitor of the inositolphosphoryl ceramide synthase, while cells lacking Tdh3 showed improved tolerance. The results are in agreement with a link between glycolysis and sphingolipid (SLs) metabolism. Engineering Tdh activity could be thus exploited to alter the SLs status with consequences in different aspects of yeast biotechnology.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Randez-Gil F, Sánchez-Adriá IE, Estruch F, Prieto JA
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference