Reference: Vieira V, et al. (2019) Comparison of pathway analysis and constraint-based methods for cell factory design. BMC Bioinformatics 20(1):350

Reference Help

Abstract


Background: Computational strain optimisation methods (CSOMs) have been successfully used to exploit genome-scale metabolic models, yielding strategies useful for allowing compound overproduction in metabolic cell factories. Minimal cut sets are particularly interesting since their definition allows searching for intervention strategies that impose strong growth-coupling phenotypes, and are not subject to optimality bias when compared with simulation-based CSOMs. However, since both types of methods have different underlying principles, they also imply different ways to formulate metabolic engineering problems, posing an obstacle when comparing their outputs.

Results: In this work, we perform an in-depth analysis of potential strategies that can be obtained with both methods, providing a critical comparison of performance, robustness, predicted phenotypes as well as strategy structure and size. To this end, we devised a pipeline including enumeration of strategies from evolutionary algorithms (EA) and minimal cut sets (MCS), filtering and flux analysis of predicted mutants to optimize the production of succinic acid in Saccharomyces cerevisiae. We additionally attempt to generalize problem formulations for MCS enumeration within the context of growth-coupled product synthesis. Strategies from evolutionary algorithms show the best compromise between acceptable growth rates and compound overproduction. However, constrained MCSs lead to a larger variety of phenotypes with several degrees of growth-coupling with production flux. The latter have proven useful in revealing the importance, in silico, of the gamma-aminobutyric acid shunt and manipulation of cofactor pools in growth-coupled designs for succinate production, mechanisms which have also been touted as potentially useful for metabolic engineering.

Conclusions: The two main groups of CSOMs are valuable for finding growth-coupled mutants. Despite the limitations in maximum growth rates and large strategy sizes, MCSs help uncover novel mechanisms for compound overproduction and thus, analyzing outputs from both methods provides a richer overview on strategies that can be potentially carried over in vivo.

Reference Type
Comparative Study | Journal Article
Authors
Vieira V, Maia P, Rocha M, Rocha I
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference