Reference: Duan SF, et al. (2019) Reverse Evolution of a Classic Gene Network in Yeast Offers a Competitive Advantage. Curr Biol 29(7):1126-1136.e5

Reference Help

Abstract


Glucose repression is a central regulatory system in yeast that ensures the utilization of carbon sources in a highly economical manner. The galactose (GAL) metabolism network is stringently regulated by glucose repression in yeast and has been a classic system for studying gene regulation. We show here that a Saccharomyces cerevisiae (S. cerevisiae) lineage in spontaneously fermented milk has swapped all its structural GAL genes (GAL2 and the GAL7-10-1 cluster) with early diverged versions through introgression. The rewired GAL network has abolished glucose repression and conversed from a strictly inducible to a constitutive system through polygenic changes in the regulatory components of the network, including a thymine (T) to cytosine (C) and a guanine (G) to adenine (A) transition in the upstream repressing sequence (URS) sites of GAL1 and GAL4, respectively, which impair Mig1p-mediated repression, loss of function of the repressor Gal80p through a T146I substitution in the protein, and subsequent futility of GAL3. Furthermore, the milk lineage of S. cerevisiae has achieved galactose-utilization rate elevation and galactose-over-glucose preference switch through the duplication of the introgressed GAL2 and the loss of function of the main glucose transporter genes HXT6 and HXT7. In addition, we demonstrate that GAL2 requires GAL7 or GAL10 for its expression, and Gal2p likely requires Gal1p for its transportation function in the milk lineage of S. cerevisiae. We show a clear case of reverse evolution of a classic gene network for ecological adaptation and provide new insights into the regulatory model of the canonical GAL network.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Duan SF, Shi JY, Yin Q, Zhang RP, Han PJ, Wang QM, Bai FY
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference