Reference: Bloem A, et al. (2018) Workflow Based on the Combination of Isotopic Tracer Experiments to Investigate Microbial Metabolism of Multiple Nutrient Sources. J Vis Exp

Reference Help

Abstract


Studies in the field of microbiology rely on the implementation of a wide range of methodologies. In particular, the development of appropriate methods substantially contributes to providing extensive knowledge of the metabolism of microorganisms growing in chemically defined media containing unique nitrogen and carbon sources. In contrast, the management through metabolism of multiple nutrient sources, despite their broad presence in natural or industrial environments, remains virtually unexplored. This situation is mainly due to the lack of suitable methodologies, which hinders investigations. We report an experimental strategy to quantitatively and comprehensively explore how metabolism operates when a nutrient is provided as a mixture of different molecules, i.e., a complex resource. Here, we describe its application for assessing the partitioning of multiple nitrogen sources through the yeast metabolic network. The workflow combines information obtained during stable isotope tracer experiments using selected 13C- or 15N-labeled substrates. It first consists of parallel and reproducible fermentations in the same medium, which includes a mixture of N-containing molecules; however,a selected nitrogen source is labeled each time. A combination of analytical procedures (HPLC, GC-MS) is implemented to assess the labeling patterns of targeted compounds and to quantify the consumption and recovery of substrates in other metabolites. An integrated analysis of the complete dataset provides an overview of the fate of consumed substrates within cells. This approach requires an accurate protocol for the collection of samples-facilitated by a robot-assisted system for online monitoring of fermentations-and the achievement of numerous time-consuming analyses. Despite these constraints, it allowed understanding, for the first time, the partitioning of multiple nitrogen sources throughout the yeast metabolic network. We elucidated the redistribution of nitrogen from more abundant sources toward other N-compounds and determined the metabolic origins of volatile molecules and proteinogenic amino acids.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Video-Audio Media
Authors
Bloem A, Rollero S, Seguinot P, Crépin L, Perez M, Picou C, Camarasa C
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference