AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Camarasa C
  • References

Author: Camarasa C


References 44 references


No citations for this author.

Download References (.nbib)

  • Minebois R, et al. (2025) Combined Isotopic Tracer and Modelling Approach Reveals Differences in Nitrogen Metabolism in S. cerevisiae, S. uvarum and S. kudriavzevii Species. Microb Biotechnol 18(4):e70087 PMID:40251794
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Castaño-Cerezo S, et al. (2024) Combining systems and synthetic biology for in vivo enzymology. EMBO J 43(21):5169-5185 PMID:39322757
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Duncan JD, et al. (2024) Oxygen alters redox cofactor dynamics and induces metabolic shifts in Saccharomyces cerevisiae during alcoholic fermentation. Food Microbiol 124:104624 PMID:39244375
    • SGD Paper
    • DOI full text
    • PubMed
  • Silva-Sousa F, et al. (2024) Bridging the gap: linking Torulaspora delbrueckii genotypes to fermentation phenotypes and wine aroma. FEMS Yeast Res 24 PMID:39509285
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tyibilika V, et al. (2024) Differences in the management of intracellular redox state between wine yeast species dictate their fermentation performances and metabolite production. Int J Food Microbiol 411:110537 PMID:38150773
    • SGD Paper
    • DOI full text
    • PubMed
  • Tyibilika V, et al. (2024) Exploring fermentative metabolic response to varying exogenous supplies of redox cofactor precursors in selected wine yeast species. FEMS Yeast Res 24 PMID:39375837
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Coral-Medina A, et al. (2023) The growth and metabolome of Saccharomyces uvarum in wine fermentations are strongly influenced by the route of nitrogen assimilation. J Ind Microbiol Biotechnol 49(6) PMID:36370452
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Álvarez R, et al. (2023) Beyond S. cerevisiae for winemaking: Fermentation-related trait diversity in the genus Saccharomyces. Food Microbiol 113:104270 PMID:37098430
    • SGD Paper
    • DOI full text
    • PubMed
  • Coral-Medina A, et al. (2022) The evolution and role of the periplasmic asparaginase Asp3 in yeast. FEMS Yeast Res 22(1) PMID:36040324
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Eder M, et al. (2022) Genetic bases for the metabolism of the DMS precursor S-methylmethionine by Saccharomyces cerevisiae. Food Microbiol 106:104041 PMID:35690444
    • SGD Paper
    • DOI full text
    • PubMed
  • Mbuyane LL, et al. (2022) Species-Dependent Metabolic Response to Lipid Mixtures in Wine Yeasts. Front Microbiol 13:823581 PMID:35677913
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Englezos V, et al. (2021) Influence of single nitrogen compounds on growth and fermentation performance of Starmerella bacillaris and Saccharomyces cerevisiae during alcoholic fermentation. Appl Environ Microbiol 87(5) PMID:33355112
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Jimenez-Lorenzo R, et al. (2021) How to modulate the formation of negative volatile sulfur compounds during wine fermentation? FEMS Yeast Res 21(5) PMID:34191008
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rollero S, et al. (2021) Nitrogen metabolism in three non-conventional wine yeast species: A tool to modulate wine aroma profiles. Food Microbiol 94:103650 PMID:33279075
    • SGD Paper
    • DOI full text
    • PubMed
  • Bergler G, et al. (2020) Dispersive Liquid-Liquid Microextraction for the Quantitation of Terpenes in Wine. J Agric Food Chem 68(47):13302-13309 PMID:32172562
    • SGD Paper
    • DOI full text
    • PubMed
  • Eder M, et al. (2020) QTL mapping of modelled metabolic fluxes reveals gene variants impacting yeast central carbon metabolism. Sci Rep 10(1):2162 PMID:32034164
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Seguinot P, et al. (2020) Analysing the impact of the nature of the nitrogen source on the formation of volatile compounds to unravel the aroma metabolism of two non-Saccharomyces strains. Int J Food Microbiol 316:108441 PMID:31778839
    • SGD Paper
    • DOI full text
    • PubMed
  • Seguinot P, et al. (2020) Impact of Nutrient Availability on the Fermentation and Production of Aroma Compounds Under Sequential Inoculation With M. pulcherrima and S. cerevisiae. Front Microbiol 11:305 PMID:32184771
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Su Y, et al. (2020) Nitrogen sources preferences of non-Saccharomyces yeasts to sustain growth and fermentation under winemaking conditions. Food Microbiol 85:103287 PMID:31500707
    • SGD Paper
    • DOI full text
    • PubMed
  • Rollero S, et al. (2019) A comparison of the nitrogen metabolic networks of Kluyveromyces marxianus and Saccharomyces cerevisiae. Environ Microbiol 21(11):4076-4091 PMID:31336027
    • SGD Paper
    • DOI full text
    • PubMed
  • Bloem A, et al. (2018) Workflow Based on the Combination of Isotopic Tracer Experiments to Investigate Microbial Metabolism of Multiple Nutrient Sources. J Vis Exp PMID:29443074
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Brice C, et al. (2018) Adaptability of the Saccharomyces cerevisiae yeasts to wine fermentation conditions relies on their strong ability to consume nitrogen. PLoS One 13(2):e0192383 PMID:29432462
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Eder M, et al. (2018) QTL mapping of volatile compound production in Saccharomyces cerevisiae during alcoholic fermentation. BMC Genomics 19(1):166 PMID:29490607
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Englezos V, et al. (2018) Specific Phenotypic Traits of Starmerella bacillaris Related to Nitrogen Source Consumption and Central Carbon Metabolite Production during Wine Fermentation. Appl Environ Microbiol 84(16) PMID:29858207
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Legras JL, et al. (2018) Adaptation of S. cerevisiae to Fermented Food Environments Reveals Remarkable Genome Plasticity and the Footprints of Domestication. Mol Biol Evol 35(7):1712-1727 PMID:29746697
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rollero S, et al. (2018) Altered Fermentation Performances, Growth, and Metabolic Footprints Reveal Competition for Nutrients between Yeast Species Inoculated in Synthetic Grape Juice-Like Medium. Front Microbiol 9:196 PMID:29487584
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Seguinot P, et al. (2018) Impact of the timing and the nature of nitrogen additions on the production kinetics of fermentative aromas by Saccharomyces cerevisiae during winemaking fermentation in synthetic media. Food Microbiol 76:29-39 PMID:30166153
    • SGD Paper
    • DOI full text
    • PubMed
  • Crépin L, et al. (2017) Management of Multiple Nitrogen Sources during Wine Fermentation by Saccharomyces cerevisiae. Appl Environ Microbiol 83(5) PMID:28115380
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Nidelet T, et al. (2016) Diversity of flux distribution in central carbon metabolism of S. cerevisiae strains from diverse environments. Microb Cell Fact 15:58 PMID:27044358
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rollero S, et al. (2016) Key role of lipid management in nitrogen and aroma metabolism in an evolved wine yeast strain. Microb Cell Fact 15:32 PMID:26861624
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rollero S, et al. (2015) Combined effects of nutrients and temperature on the production of fermentative aromas by Saccharomyces cerevisiae during wine fermentation. Appl Microbiol Biotechnol 99(5):2291-304 PMID:25412578
    • SGD Paper
    • DOI full text
    • PubMed
  • Crépin L, et al. (2014) Efficient ammonium uptake and mobilization of vacuolar arginine by Saccharomyces cerevisiae wine strains during wine fermentation. Microb Cell Fact 13:109 PMID:25134990
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Clement T, et al. (2013) Metabolic responses of Saccharomyces cerevisiae to valine and ammonium pulses during four-stage continuous wine fermentations. Appl Environ Microbiol 79(8):2749-58 PMID:23417007
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Celton M, et al. (2012) A comparative transcriptomic, fluxomic and metabolomic analysis of the response of Saccharomyces cerevisiae to increases in NADPH oxidation. BMC Genomics 13:317 PMID:22805527
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Celton M, et al. (2012) A constraint-based model analysis of the metabolic consequences of increased NADPH oxidation in Saccharomyces cerevisiae. Metab Eng 14(4):366-79 PMID:22709677
    • SGD Paper
    • DOI full text
    • PubMed
  • Crépin L, et al. (2012) Sequential use of nitrogen compounds by Saccharomyces cerevisiae during wine fermentation: a model based on kinetic and regulation characteristics of nitrogen permeases. Appl Environ Microbiol 78(22):8102-11 PMID:22983966
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cadière A, et al. (2011) Evolutionary engineered Saccharomyces cerevisiae wine yeast strains with increased in vivo flux through the pentose phosphate pathway. Metab Eng 13(3):263-71 PMID:21300171
    • SGD Paper
    • DOI full text
    • PubMed
  • Camarasa C, et al. (2011) Phenotypic landscape of Saccharomyces cerevisiae during wine fermentation: evidence for origin-dependent metabolic traits. PLoS One 6(9):e25147 PMID:21949874
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Clement T, et al. (2011) Use of a continuous multistage bioreactor to mimic winemaking fermentation. Int J Food Microbiol 150(1):42-9 PMID:21839532
    • SGD Paper
    • DOI full text
    • PubMed
  • Bach B, et al. (2009) New insights into {gamma}-aminobutyric acid catabolism: Evidence for {gamma}-hydroxybutyric acid and polyhydroxybutyrate synthesis in Saccharomyces cerevisiae. Appl Environ Microbiol 75(13):4231-9 PMID:19411412
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Camarasa C, et al. (2007) Role in anaerobiosis of the isoenzymes for Saccharomyces cerevisiae fumarate reductase encoded by OSM1 and FRDS1. Yeast 24(5):391-401 PMID:17345583
    • SGD Paper
    • DOI full text
    • PubMed
  • Cambon B, et al. (2006) Effects of GPD1 overexpression in Saccharomyces cerevisiae commercial wine yeast strains lacking ALD6 genes. Appl Environ Microbiol 72(7):4688-94 PMID:16820460
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Camarasa C, et al. (2003) Investigation by 13C-NMR and tricarboxylic acid (TCA) deletion mutant analysis of pathways for succinate formation in Saccharomyces cerevisiae during anaerobic fermentation. Microbiology (Reading) 149(Pt 9):2669-2678 PMID:12949191
    • SGD Paper
    • DOI full text
    • PubMed
  • Camarasa C, et al. (2001) Characterization of Schizosaccharomyces pombe malate permease by expression in Saccharomyces cerevisiae. Appl Environ Microbiol 67(9):4144-51 PMID:11526017
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top