Background: Butanol isomers are regarded as more suitable fuel substitutes than bioethanol. n-Butanol is naturally produced by some Clostridia species, but due to inherent problems with clostridial fermentations, industrially more relevant organisms have been genetically engineered for n-butanol production. Although the yeast Saccharomyces cerevisiae holds significant advantages in terms of scalable industrial fermentation, n-butanol yields and titers obtained so far are only low.
Results: Here we report a thorough analysis and significant improvements of n-butanol production from glucose with yeast via the acetoacetyl-CoA-derived pathway. First, we established an improved n-butanol pathway by testing various isoenzymes of different pathway reactions. This resulted in n-butanol titers around 15 mg/L in synthetic medium after 74 h. As the initial substrate of the n-butanol pathway is acetyl-coenzyme A (acetyl-CoA) and most intermediates are bound to coenzyme A (CoA), we increased CoA synthesis by overexpression of the pantothenate kinase coaA gene from Escherichia coli. Supplementation with pantothenate increased n-butanol production up to 34 mg/L. Additional reduction of ethanol formation by deletion of alcohol dehydrogenase genes ADH1-5 led to n-butanol titers of 71 mg/L. Further expression of a mutant form of an ATP independent acetylating acetaldehyde dehydrogenase, adhE(A267T/E568K), converting acetaldehyde into acetyl-CoA, resulted in 95 mg/L n-butanol. In the final strain, the n-butanol pathway genes, coaA and adhE (A267T/E568K), were stably integrated into the yeast genome, thereby deleting another alcohol dehydrogenase gene, ADH6, and GPD2-encoding glycerol-3-phosphate dehydrogenase. This led to a further decrease in ethanol and glycerol by-product formation and elevated redox power in the form of NADH. With the addition of pantothenate, this strain produced n-butanol up to a titer of 130 ± 20 mg/L and a yield of 0.012 g/g glucose. These are the highest values reported so far for S. cerevisiae in synthetic medium via an acetoacetyl-CoA-derived n-butanol pathway.
Conclusions: By gradually increasing substrate supply and redox power in the form of CoA, acetyl-CoA, and NADH, and decreasing ethanol and glycerol formation, we could stepwise increase n-butanol production in S. cerevisiae. However, still further bottlenecks in the n-butanol pathway must be deciphered and improved for industrially relevant n-butanol production levels.
Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.
Evidence ID | Analyze ID | Gene/Complex | Systematic Name/Complex Accession | Qualifier | Gene Ontology Term ID | Gene Ontology Term | Aspect | Annotation Extension | Evidence | Method | Source | Assigned On | Reference |
---|
Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.
Evidence ID | Analyze ID | Gene | Gene Systematic Name | Phenotype | Experiment Type | Experiment Type Category | Mutant Information | Strain Background | Chemical | Details | Reference |
---|
Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.
Evidence ID | Analyze ID | Gene | Gene Systematic Name | Disease Ontology Term | Disease Ontology Term ID | Qualifier | Evidence | Method | Source | Assigned On | Reference |
---|
Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.
Evidence ID | Analyze ID | Regulator | Regulator Systematic Name | Target | Target Systematic Name | Direction | Regulation of | Happens During | Regulator Type | Direction | Regulation Of | Happens During | Method | Evidence | Strain Background | Reference |
---|
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.
Site | Modification | Modifier | Source | Reference |
---|
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.
Evidence ID | Analyze ID | Interactor | Interactor Systematic Name | Interactor | Interactor Systematic Name | Allele | Assay | Annotation | Action | Phenotype | SGA score | P-value | Source | Reference | Note |
---|
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.
Evidence ID | Analyze ID | Interactor | Interactor Systematic Name | Interactor | Interactor Systematic Name | Assay | Annotation | Action | Modification | Source | Reference | Note |
---|
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.
Complement ID | Locus ID | Gene | Species | Gene ID | Strain background | Direction | Details | Source | Reference |
---|
Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; download this table as a .txt file using the Download button;
Evidence ID | Analyze ID | Dataset | Description | Keywords | Number of Conditions | Reference |
---|
Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; download this table as a .txt file using the Download button;
Evidence ID | Analyze ID | File | Description |
---|